Comparative Analysis of CNN-Based Smart Pre-Trained Models for Object Detection on DOTA

Hina Hashmi, Rakesh Kumar Dwivedi, Anil Kumar
{"title":"Comparative Analysis of CNN-Based Smart Pre-Trained Models for Object Detection on DOTA","authors":"Hina Hashmi, Rakesh Kumar Dwivedi, Anil Kumar","doi":"10.14313/jamris/2-2024/11","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed comparative research on the classification of various objects in satellite images using some pre-trained models of CNN (VGG-16, Inception-V3, ResNet-50, EfficientNet-B7) and R-CNN. In this research work, we have used the DOTA dataset, which combines data from 14 classes. We have implemented above mentioned pre-trained models of CNN, and R-CNN to achieve optimal results for accuracy as well as productivity. To detect objects like ships, tennis courts, swimming pools, vehicles, and harbors from remotely accessed images. In this study, we have used a convolutional neural network (CNN) as the base model. The transfer learning mechanism is employed to speed up the results and for complex computations. We have discovered with the help of experimental analysis that R-CNN and Inception-V3 are performing best out of the five pre-trained models.","PeriodicalId":37910,"journal":{"name":"Journal of Automation, Mobile Robotics and Intelligent Systems","volume":"7 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation, Mobile Robotics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/jamris/2-2024/11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we proposed comparative research on the classification of various objects in satellite images using some pre-trained models of CNN (VGG-16, Inception-V3, ResNet-50, EfficientNet-B7) and R-CNN. In this research work, we have used the DOTA dataset, which combines data from 14 classes. We have implemented above mentioned pre-trained models of CNN, and R-CNN to achieve optimal results for accuracy as well as productivity. To detect objects like ships, tennis courts, swimming pools, vehicles, and harbors from remotely accessed images. In this study, we have used a convolutional neural network (CNN) as the base model. The transfer learning mechanism is employed to speed up the results and for complex computations. We have discovered with the help of experimental analysis that R-CNN and Inception-V3 are performing best out of the five pre-trained models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 CNN 的智能预训练模型在 DOTA 上进行物体检测的对比分析
在本文中,我们提出了使用一些预先训练好的 CNN 模型(VGG-16、Inception-V3、ResNet-50、EfficientNet-B7)和 R-CNN 对卫星图像中的各种物体进行分类的比较研究。在这项研究工作中,我们使用了 DOTA 数据集,其中包含来自 14 个类别的数据。我们采用了上述预先训练好的 CNN 和 R-CNN 模型,以获得最佳的准确性和生产率。从远程访问的图像中检测船只、网球场、游泳池、车辆和港口等物体。在这项研究中,我们使用了卷积神经网络(CNN)作为基础模型。我们采用了迁移学习机制,以加快结果和复杂计算的处理速度。通过实验分析,我们发现 R-CNN 和 Inception-V3 在五个预训练模型中表现最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Automation, Mobile Robotics and Intelligent Systems
Journal of Automation, Mobile Robotics and Intelligent Systems Engineering-Control and Systems Engineering
CiteScore
1.10
自引率
0.00%
发文量
25
期刊介绍: Fundamentals of automation and robotics Applied automatics Mobile robots control Distributed systems Navigation Mechatronics systems in robotics Sensors and actuators Data transmission Biomechatronics Mobile computing
期刊最新文献
A Numerical Analysis Based Internet of Things (IOT) and Big Data Analytics to Minimize Energy Consumption in Smart Buildings Design of Small-Phase Time-Variant Low-pass Digital Fractional Differentiators and Integrators Comparative Analysis of CNN-Based Smart Pre-Trained Models for Object Detection on DOTA Research to Simulate the Ship’s Vibration Regeneration System using a 6-Degree Freedom Gough-Stewart Parallel Robot Effective Nonlinear Predictive and CTC-PID Control of Rigid Manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1