Analisis Peramalan Demand Produk RBL dengan Metode Double Exponensial Smoothing, Moving Avarage, dan Regresi Linear di PT Seiwa Indonesia

Nada Nishi Azizah, Firda Ainun Nisah
{"title":"Analisis Peramalan Demand Produk RBL dengan Metode Double Exponensial Smoothing, Moving Avarage, dan Regresi Linear di PT Seiwa Indonesia","authors":"Nada Nishi Azizah, Firda Ainun Nisah","doi":"10.31004/jutin.v7i1.24763","DOIUrl":null,"url":null,"abstract":"Based on historical data on the number of product requests and products produced in the January 2021-December 2022 period, there is a considerable discrepancy. Therefore to be able to predict demand in one or several subsequent periods based on past product demand data, the researcher conducts a forecasting analysis using the double exponential smoothing, moving average, and linear regression methods to find out the most accurate forecasting method to use. Based on the calculation results, it can be concluded that the most appropriate Forecasting method is the linear regression method because it has the lowest MSE value of 1,346,936,387. It is hoped that it will be able to assist PT Seiwa Indonesia in providing future stocks of RBL products in more accurate manner so as to reduce losses due to excessive production. ","PeriodicalId":17759,"journal":{"name":"Jurnal Teknik Industri Terintegrasi","volume":"14 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknik Industri Terintegrasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31004/jutin.v7i1.24763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on historical data on the number of product requests and products produced in the January 2021-December 2022 period, there is a considerable discrepancy. Therefore to be able to predict demand in one or several subsequent periods based on past product demand data, the researcher conducts a forecasting analysis using the double exponential smoothing, moving average, and linear regression methods to find out the most accurate forecasting method to use. Based on the calculation results, it can be concluded that the most appropriate Forecasting method is the linear regression method because it has the lowest MSE value of 1,346,936,387. It is hoped that it will be able to assist PT Seiwa Indonesia in providing future stocks of RBL products in more accurate manner so as to reduce losses due to excessive production. 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印度尼西亚 PT Seiwa 公司使用双指数平滑法、移动平均法和线性回归法进行 RBL 产品需求预测的分析
根据 2021 年 1 月至 2022 年 12 月期间的产品需求数量和产品生产数量的历史数据,两者之间存在相当大的差异。因此,为了能够根据过去的产品需求数据预测以后一个或几个时期的需求,研究人员使用双指数平滑法、移动平均法和线性回归法进行预测分析,以找出最准确的预测方法。根据计算结果,可以得出结论,最合适的预测方法是线性回归法,因为它的 MSE 值最低,为 1,346,936,387. 希望它能够帮助 PT Seiwa Indonesia 更准确地提供 RBL 产品的未来库存,以减少因生产过剩而造成的损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analisis SWOT dan Technique For Order Preference by Similarity to Ideal Solution (TOPSIS) untuk Strategi Pengembangan Usaha di Gapit 24 Klasifikasi Menggunakan Metode Random Forest untuk Awal Deteksi Diabetes Melitus Tipe 2 Rancang Ulang Alat Penghalus Rebana untuk Meminimumkan Waktu Proses Penghalusan Analisis Faktor Keterlambatan Penyelesaian Proyek Peningkatan Jalan Ruas Ambemali (Studi Kasus Jln. Belalo/Lasolo – Jln. Arisunggu) Perancangan Penyiraman Kandang Berbasis Arduino Uno Guna Menjaga Stabulitas Suhu dan Kelembapan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1