Compression of electrical code violation recognition data using the improved swinging door trending algorithm

IF 3.1 Q1 Mathematics Applied Mathematics and Nonlinear Sciences Pub Date : 2024-01-01 DOI:10.2478/amns-2024-0478
Yingchun Yang, Xu Zhao, Tianxi Han, Zhe Li, Fei Pan
{"title":"Compression of electrical code violation recognition data using the improved swinging door trending algorithm","authors":"Yingchun Yang, Xu Zhao, Tianxi Han, Zhe Li, Fei Pan","doi":"10.2478/amns-2024-0478","DOIUrl":null,"url":null,"abstract":"\n Aiming at the challenge of storing massive power grid data, this paper proposes an improved swing gate trend algorithm to effectively compress 5G data. The algorithm first performs least squares smoothing on the original data to reduce noise interference on the SDT algorithm, which enables the data compression process to more accurately determine the data trend. Further, the shortcomings of the original SDT algorithm are improved, including adaptive frequency conversion data processing, dynamic threshold adjustment, and anomaly recording strategy, to enhance the practicality and efficiency of the algorithm. Through simulation analysis and example data validation, the study shows that the data compression ratio can be stabilized at about 23.98 when the data compression time reaches 1.6 minutes, and the actual error is very close to the desired error. The time overhead of the improved SDT algorithm is only 0.225 seconds, indicating that the algorithm is efficient and reliable. Combined with different data compression storage strategies, the algorithm can further reduce the data compression time. This study provides an adequate data compression method for electric code violation identification, which offers a practical solution for processing and storing large-scale grid data.","PeriodicalId":52342,"journal":{"name":"Applied Mathematics and Nonlinear Sciences","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Nonlinear Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amns-2024-0478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the challenge of storing massive power grid data, this paper proposes an improved swing gate trend algorithm to effectively compress 5G data. The algorithm first performs least squares smoothing on the original data to reduce noise interference on the SDT algorithm, which enables the data compression process to more accurately determine the data trend. Further, the shortcomings of the original SDT algorithm are improved, including adaptive frequency conversion data processing, dynamic threshold adjustment, and anomaly recording strategy, to enhance the practicality and efficiency of the algorithm. Through simulation analysis and example data validation, the study shows that the data compression ratio can be stabilized at about 23.98 when the data compression time reaches 1.6 minutes, and the actual error is very close to the desired error. The time overhead of the improved SDT algorithm is only 0.225 seconds, indicating that the algorithm is efficient and reliable. Combined with different data compression storage strategies, the algorithm can further reduce the data compression time. This study provides an adequate data compression method for electric code violation identification, which offers a practical solution for processing and storing large-scale grid data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用改进的旋转门趋势算法压缩违反电气法规识别数据
针对海量电网数据存储的难题,本文提出了一种改进的摆动门趋势算法,以有效压缩 5G 数据。该算法首先对原始数据进行最小二乘平滑处理,以减少噪声对 SDT 算法的干扰,从而使数据压缩过程能更准确地判断数据趋势。此外,还改进了原有 SDT 算法的不足之处,包括自适应变频数据处理、动态阈值调整、异常记录策略等,提高了算法的实用性和效率。通过仿真分析和实例数据验证,研究表明当数据压缩时间达到 1.6 分钟时,数据压缩比可以稳定在 23.98 左右,实际误差与期望误差非常接近。改进后的 SDT 算法的时间开销仅为 0.225 秒,表明该算法高效可靠。结合不同的数据压缩存储策略,该算法可以进一步缩短数据压缩时间。本研究为电码违规识别提供了一种适当的数据压缩方法,为处理和存储大规模电网数据提供了一种实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Mathematics and Nonlinear Sciences
Applied Mathematics and Nonlinear Sciences Engineering-Engineering (miscellaneous)
CiteScore
2.90
自引率
25.80%
发文量
203
期刊最新文献
Research on Optimization of University English Practice Teaching Mode Based on Graph Structure in Online Learning Environment Effective Application of Information Technology in Physical Education Teaching in the Era of Big Data Research on Digital Distribution Network Micro-application and Precise Control of Distribution Operations Based on Grid Resource Business Center Differential Analysis of Stylistic Features in English Translation Teaching Based on Semantic Contrastive Analysis Research on Informatization Mode of Higher Education Management and Student Cultivation Mechanism in the Internet Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1