Machine Learning Based Battery Anomaly Detection Using Empirical Data

Md Shahriar Nazim, Yeong Min Jang, ByungDeok Chung
{"title":"Machine Learning Based Battery Anomaly Detection Using Empirical Data","authors":"Md Shahriar Nazim, Yeong Min Jang, ByungDeok Chung","doi":"10.1109/ICAIIC60209.2024.10463489","DOIUrl":null,"url":null,"abstract":"In the context of energy storage systems (ESS), this work investigates the use of machine learning approaches for anomaly identification utilizing empirical site data. Making advantage of the empirical data gathered from the operational environment, the study concentrates on using precise anomaly detection techniques-mainly the Isolation Forest method. The Isolation forest approach is utilized to detect abnormalities in the empirical data obtained by ESS operations. It is well-known for its effectiveness in locating outliers in datasets. In order to improve the operational dependability and safety of Energy Storage Systems (ESS), this study explores the application of the Isolation Forest technique as a powerful tool for identifying anomalies in the site data. The results of the study show that, Isolation forest can detect anomalies with the accuracy of 99.43 %.","PeriodicalId":518256,"journal":{"name":"2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"62 ","pages":"847-850"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC60209.2024.10463489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of energy storage systems (ESS), this work investigates the use of machine learning approaches for anomaly identification utilizing empirical site data. Making advantage of the empirical data gathered from the operational environment, the study concentrates on using precise anomaly detection techniques-mainly the Isolation Forest method. The Isolation forest approach is utilized to detect abnormalities in the empirical data obtained by ESS operations. It is well-known for its effectiveness in locating outliers in datasets. In order to improve the operational dependability and safety of Energy Storage Systems (ESS), this study explores the application of the Isolation Forest technique as a powerful tool for identifying anomalies in the site data. The results of the study show that, Isolation forest can detect anomalies with the accuracy of 99.43 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用经验数据进行基于机器学习的电池异常检测
在储能系统(ESS)方面,这项工作研究了利用经验现场数据进行异常识别的机器学习方法。本研究利用从运行环境中收集的经验数据,集中使用精确的异常检测技术--主要是隔离林方法。隔离林方法用于检测 ESS 运行所获经验数据中的异常。该方法以其在数据集中定位异常值的有效性而闻名。为了提高储能系统(ESS)的运行可靠性和安全性,本研究探索了隔离林技术的应用,将其作为识别现场数据异常的有力工具。研究结果表明,隔离林检测异常的准确率高达 99.43%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Based Battery Anomaly Detection Using Empirical Data Design of Greenhouse Automated Carbon Cycling System for Carbon Savings Securing Critical Infrastructure: A Denoising Data-Driven Approach for Intrusion Detection in ICS Network Energy Minimization for Participatory Federated Learning in IoT Analyzed via Game Theory Bit-by-Bit: A Quantization-Aware Training Framework with XAI for Robust Metaverse Cybersecurity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1