Bit-by-Bit: A Quantization-Aware Training Framework with XAI for Robust Metaverse Cybersecurity

Ebuka Chinaechetam Nkoro, C. I. Nwakanma, Jae-Min Lee, Dong‐Seong Kim
{"title":"Bit-by-Bit: A Quantization-Aware Training Framework with XAI for Robust Metaverse Cybersecurity","authors":"Ebuka Chinaechetam Nkoro, C. I. Nwakanma, Jae-Min Lee, Dong‐Seong Kim","doi":"10.1109/ICAIIC60209.2024.10463374","DOIUrl":null,"url":null,"abstract":"In this work, a novel framework for detecting mali-cious networks in the IoT-enabled Metaverse networks to ensure that malicious network traffic is identified and integrated to suit optimal Metaverse cybersecurity is presented. First, the study raises a core security issue related to the cyberthreats in Metaverse networks and its privacy breaching risks. Second, to address the shortcomings of efficient and effective network intrusion detection (NIDS) of dark web traffic, this study employs a quantization-aware trained (QAT) 1D CNN followed by fully con-nected networks (ID CNNs-GRU-FCN) model, which addresses the issues of and memory contingencies in Metaverse NIDS models. The QAT model is made interpretable using eXplainable artificial intelligence (XAI) methods namely, SHapley additive exPlanations (SHAP) and local interpretable model-agnostic ex-planations (LIME), to provide trustworthy model transparency and interpretability. Overall, the proposed method contributes to storage benefits four times higher than the original model without quantization while attaining a high accuracy of 99.82 %.","PeriodicalId":518256,"journal":{"name":"2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"35 31","pages":"832-837"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC60209.2024.10463374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a novel framework for detecting mali-cious networks in the IoT-enabled Metaverse networks to ensure that malicious network traffic is identified and integrated to suit optimal Metaverse cybersecurity is presented. First, the study raises a core security issue related to the cyberthreats in Metaverse networks and its privacy breaching risks. Second, to address the shortcomings of efficient and effective network intrusion detection (NIDS) of dark web traffic, this study employs a quantization-aware trained (QAT) 1D CNN followed by fully con-nected networks (ID CNNs-GRU-FCN) model, which addresses the issues of and memory contingencies in Metaverse NIDS models. The QAT model is made interpretable using eXplainable artificial intelligence (XAI) methods namely, SHapley additive exPlanations (SHAP) and local interpretable model-agnostic ex-planations (LIME), to provide trustworthy model transparency and interpretability. Overall, the proposed method contributes to storage benefits four times higher than the original model without quantization while attaining a high accuracy of 99.82 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逐位:利用 XAI 的量化感知训练框架实现强大的元宇宙网络安全
在这项工作中,提出了一个在物联网支持的 Metaverse 网络中检测恶意网络的新型框架,以确保识别和整合恶意网络流量,从而实现最佳的 Metaverse 网络安全。首先,该研究提出了与 Metaverse 网络中的网络威胁及其隐私泄露风险有关的核心安全问题。其次,为了解决暗网流量的高效网络入侵检测(NIDS)的不足,本研究采用了量化感知训练(QAT)的一维 CNN 后接全连接网络(ID CNNs-GRU-FCN)模型,解决了 Metaverse NIDS 模型中的内存突发事件问题。QAT 模型采用可解释人工智能(XAI)方法,即 SHapley 可添加前平面图(SHAP)和本地可解释模型无关前平面图(LIME),以提供可信的模型透明度和可解释性。总体而言,拟议方法的存储效益比未量化的原始模型高出四倍,同时达到 99.82 % 的高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Based Battery Anomaly Detection Using Empirical Data Design of Greenhouse Automated Carbon Cycling System for Carbon Savings Securing Critical Infrastructure: A Denoising Data-Driven Approach for Intrusion Detection in ICS Network Energy Minimization for Participatory Federated Learning in IoT Analyzed via Game Theory Bit-by-Bit: A Quantization-Aware Training Framework with XAI for Robust Metaverse Cybersecurity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1