Nicholas Riccardi , Satvik Nelakuditi , Dirk B. den Ouden , Chris Rorden , Julius Fridriksson , Rutvik H. Desai
{"title":"Discourse- and lesion-based aphasia quotient estimation using machine learning","authors":"Nicholas Riccardi , Satvik Nelakuditi , Dirk B. den Ouden , Chris Rorden , Julius Fridriksson , Rutvik H. Desai","doi":"10.1016/j.nicl.2024.103602","DOIUrl":null,"url":null,"abstract":"<div><p>Discourse is a fundamentally important aspect of communication, and discourse production provides a wealth of information about linguistic ability. Aphasia commonly affects, in multiple ways, the ability to produce discourse. Comprehensive aphasia assessments such as the Western Aphasia Battery-Revised (WAB-R) are time- and resource-intensive. We examined whether discourse measures can be used to estimate WAB-R Aphasia Quotient (AQ), and whether this can serve as an ecologically valid, less resource-intensive measure. We used features extracted from discourse tasks using three AphasiaBank prompts involving expositional (picture description), story narrative, and procedural discourse. These features were used to train a machine learning model to predict the WAB-R AQ. We also compared and supplemented the model with lesion location information from structural neuroimaging. We found that discourse-based models could estimate AQ well, and that they outperformed models based on lesion features. Addition of lesion features to the discourse features did not improve the performance of the discourse model substantially. Inspection of the most informative discourse features revealed that different prompt types taxed different aspects of language. These findings suggest that discourse can be used to estimate aphasia severity, and provide insight into the linguistic content elicited by different types of discourse prompts.</p></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221315822400041X/pdfft?md5=4d507c0a72cd4ec4f7c9d0ab8d1ee5c1&pid=1-s2.0-S221315822400041X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221315822400041X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Discourse is a fundamentally important aspect of communication, and discourse production provides a wealth of information about linguistic ability. Aphasia commonly affects, in multiple ways, the ability to produce discourse. Comprehensive aphasia assessments such as the Western Aphasia Battery-Revised (WAB-R) are time- and resource-intensive. We examined whether discourse measures can be used to estimate WAB-R Aphasia Quotient (AQ), and whether this can serve as an ecologically valid, less resource-intensive measure. We used features extracted from discourse tasks using three AphasiaBank prompts involving expositional (picture description), story narrative, and procedural discourse. These features were used to train a machine learning model to predict the WAB-R AQ. We also compared and supplemented the model with lesion location information from structural neuroimaging. We found that discourse-based models could estimate AQ well, and that they outperformed models based on lesion features. Addition of lesion features to the discourse features did not improve the performance of the discourse model substantially. Inspection of the most informative discourse features revealed that different prompt types taxed different aspects of language. These findings suggest that discourse can be used to estimate aphasia severity, and provide insight into the linguistic content elicited by different types of discourse prompts.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.