{"title":"The linear stability of the Kazhikhov–Smagulov model","authors":"C. Jacques, B. Di Pierro, M. Buffat","doi":"10.1016/j.euromechflu.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>Using the Kazhikhov–Smagulov model, the linear stability of incompressible mixing layers and jets entailing large density variation is addressed analytically. The classical theorems of Squire, Rayleigh and Fjørtoft are extended to variable-density flows. It is shown that the bidimensional configuration is still the most unstable one, but the inflexion point is no longer a necessary condition for instability. Instead, a non trivial condition involving density and velocity gradient is identified. Dispersion relations are obtained for small wavenumbers as well as for piecewise linear base flow profiles. Additionally, an estimation of the threshold wavenumber that stabilises the flow is obtained. It is demonstrated that density variations modify the growth rate of the instability as well as the wavelength associated with the most unstable mode and the unstable wavenumber range. These results are in good agreement with numerical computations. Finally, it is observed that viscous effects are purely stabilising while molecular diffusion does not affect the stability.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"106 ","pages":"Pages 116-123"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624000530/pdfft?md5=f482197308eef5090b2c7d7974d37782&pid=1-s2.0-S0997754624000530-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624000530","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Using the Kazhikhov–Smagulov model, the linear stability of incompressible mixing layers and jets entailing large density variation is addressed analytically. The classical theorems of Squire, Rayleigh and Fjørtoft are extended to variable-density flows. It is shown that the bidimensional configuration is still the most unstable one, but the inflexion point is no longer a necessary condition for instability. Instead, a non trivial condition involving density and velocity gradient is identified. Dispersion relations are obtained for small wavenumbers as well as for piecewise linear base flow profiles. Additionally, an estimation of the threshold wavenumber that stabilises the flow is obtained. It is demonstrated that density variations modify the growth rate of the instability as well as the wavelength associated with the most unstable mode and the unstable wavenumber range. These results are in good agreement with numerical computations. Finally, it is observed that viscous effects are purely stabilising while molecular diffusion does not affect the stability.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.