Improved Non-enzymatic Glucose Sensors of ZnO Nanorods by Adsorb Pt Nanoparticles

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nanotechnology Pub Date : 2024-04-01 DOI:10.1109/TNANO.2024.3382635
Yi-Hsing Liu;Sheng-Joue Young;Cheng-Yen Hsien;Yen-Lin Chu;Zi-Hao Wang;Shoou-Jinn Chang
{"title":"Improved Non-enzymatic Glucose Sensors of ZnO Nanorods by Adsorb Pt Nanoparticles","authors":"Yi-Hsing Liu;Sheng-Joue Young;Cheng-Yen Hsien;Yen-Lin Chu;Zi-Hao Wang;Shoou-Jinn Chang","doi":"10.1109/TNANO.2024.3382635","DOIUrl":null,"url":null,"abstract":"The study proposed simple methods with hydrothermal method and physical vapor deposition coating technique (sputter coater) to prepare Pt nanoparticles attach on ZnO nanorods, and then applied in non-enzymatic glucose sensor. Glucose sensing is tested using electrochemical measurement, including cyclic voltammetry and amperometry method. In cyclic voltammetry measurement, the sensitivity of ZnO and Pt/ZnO NRs sensor are 5.0273 and 32.0527 μA/cm\n<sup>2</sup>\n-mM when an applied potential at 0.1 V, which is carried out different glucose concentration from 0 mM to 8 mM. For observing the stability and selectivity, we were used the amperometry method to measure various glucose concentration and interfering species (ascorbic acid and uric acid). It is demonstrated that the Pt/ZnO NRs sensor exhibited excellent stability and anti-interference performance.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"303-310"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10487988/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The study proposed simple methods with hydrothermal method and physical vapor deposition coating technique (sputter coater) to prepare Pt nanoparticles attach on ZnO nanorods, and then applied in non-enzymatic glucose sensor. Glucose sensing is tested using electrochemical measurement, including cyclic voltammetry and amperometry method. In cyclic voltammetry measurement, the sensitivity of ZnO and Pt/ZnO NRs sensor are 5.0273 and 32.0527 μA/cm 2 -mM when an applied potential at 0.1 V, which is carried out different glucose concentration from 0 mM to 8 mM. For observing the stability and selectivity, we were used the amperometry method to measure various glucose concentration and interfering species (ascorbic acid and uric acid). It is demonstrated that the Pt/ZnO NRs sensor exhibited excellent stability and anti-interference performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过吸附铂纳米颗粒改进氧化锌纳米棒的非酶葡萄糖传感器
该研究提出了利用水热法和物理气相沉积镀膜技术(溅射镀膜机)制备附着在氧化锌纳米棒上的铂纳米粒子的简单方法,然后将其应用于非酶葡萄糖传感器。葡萄糖传感测试采用电化学测量方法,包括循环伏安法和安培法。在循环伏安法测量中,当施加 0.1 V 的电位时,ZnO 和 Pt/ZnO NRs 传感器的灵敏度分别为 5.0273 和 32.0527 μA/cm2-mM。为了观察其稳定性和选择性,我们使用安培计法测量了不同浓度的葡萄糖和干扰物(抗坏血酸和尿酸)。结果表明,Pt/ZnO NRs 传感器具有出色的稳定性和抗干扰性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
期刊最新文献
High-Speed and Area-Efficient Serial IMPLY-Based Approximate Subtractor and Comparator for Image Processing and Neural Networks Design of a Graphene Based Terahertz Perfect Metamaterial Absorber With Multiple Sensing Performance Modeling and Simulation of Correlated Cycle-to- Cycle Variability in the Current-Voltage Hysteresis Loops of RRAM Devices Impact of Electron and Hole Trap Profiles in BE-TOX on Retention Characteristics of 3D NAND Flash Memory Full 3-D Monte Carlo Simulation of Coupled Electron-Phonon Transport: Self-Heating in a Nanoscale FinFET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1