Improved electro-kinetics of new electrolyte composition for realizing high-performance zinc-bromine redox flow battery

Yogapriya Vetriselvam , Gnana Sangeetha Ramachandran , Raghupandiyan Naresh , Karuppusamy Mariyappan , Ragupathy Pitchai , Mani Ulaganathan
{"title":"Improved electro-kinetics of new electrolyte composition for realizing high-performance zinc-bromine redox flow battery","authors":"Yogapriya Vetriselvam ,&nbsp;Gnana Sangeetha Ramachandran ,&nbsp;Raghupandiyan Naresh ,&nbsp;Karuppusamy Mariyappan ,&nbsp;Ragupathy Pitchai ,&nbsp;Mani Ulaganathan","doi":"10.1016/j.nxener.2024.100123","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous Redox Flow Batteries (ARFB) are the most prominent technology for large-scale energy storage applications. The energy density of the ARFBs is mainly determined by the electrolyte components, which highly influence the flow battery performance. In the present work, we acutely investigated the various electrolyte compositions and optimized the best electrolyte for realizing the high performance of Zn-Br<sub>2</sub> ARFBs. The electrode kinetics, such as rate constant, exchange current density, conductivity, and diffusion coefficient, were analyzed using electrochemical techniques, cyclic voltammetry, and electrochemical impedance analysis. It was observed that zinc bromide (ZnBr<sub>2</sub>) + perchloric acid (HClO<sub>4</sub>) + 1-Ethyl-1-methylmorpholinium bromide (MEM) + N-ethyl-N-methylpyrrolidinium bromide (MEP) and ZnBr<sub>2</sub> + zinc chloride (ZnCl<sub>2</sub>) + MEM + MEP electrolytes showed improved performance, where the redox kinetics of 2Br<sup>-</sup>/Br<sub>2</sub> redox couple is greatly enhanced. The presence of perchloric acid unlocks the capacity of full electro-oxidation of bromide (Br<sup>-</sup>) to bromine (Br<sub>2</sub>) as it involves 1e<sup>-</sup> per Br<sup>-,</sup> which would be highly beneficial to attain high energy density. Further, Zn-Br<sub>2</sub> RFB adopted with optimized electrolyte formulation ZnBr<sub>2</sub> + HClO<sub>4</sub> + MEM+ MEP shows a better round-trip efficiency and displays a stable long cycling performance over 200 cycles with an energy (EE) and coulombic efficiency (CE) of &gt; 68% and &gt; 92%, respectively.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000280/pdfft?md5=c4ed9ee3bb2f47c7b0538f42535048d4&pid=1-s2.0-S2949821X24000280-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous Redox Flow Batteries (ARFB) are the most prominent technology for large-scale energy storage applications. The energy density of the ARFBs is mainly determined by the electrolyte components, which highly influence the flow battery performance. In the present work, we acutely investigated the various electrolyte compositions and optimized the best electrolyte for realizing the high performance of Zn-Br2 ARFBs. The electrode kinetics, such as rate constant, exchange current density, conductivity, and diffusion coefficient, were analyzed using electrochemical techniques, cyclic voltammetry, and electrochemical impedance analysis. It was observed that zinc bromide (ZnBr2) + perchloric acid (HClO4) + 1-Ethyl-1-methylmorpholinium bromide (MEM) + N-ethyl-N-methylpyrrolidinium bromide (MEP) and ZnBr2 + zinc chloride (ZnCl2) + MEM + MEP electrolytes showed improved performance, where the redox kinetics of 2Br-/Br2 redox couple is greatly enhanced. The presence of perchloric acid unlocks the capacity of full electro-oxidation of bromide (Br-) to bromine (Br2) as it involves 1e- per Br-, which would be highly beneficial to attain high energy density. Further, Zn-Br2 RFB adopted with optimized electrolyte formulation ZnBr2 + HClO4 + MEM+ MEP shows a better round-trip efficiency and displays a stable long cycling performance over 200 cycles with an energy (EE) and coulombic efficiency (CE) of > 68% and > 92%, respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进新型电解质成分的电动力学,实现高性能锌溴氧化还原液流电池
水氧化还原液流电池(ARFB)是大规模储能应用中最突出的技术。ARFB 的能量密度主要由电解质成分决定,而电解质成分对液流电池的性能有很大影响。在本研究中,我们对各种电解质成分进行了深入研究,并优化了最佳电解质,以实现 Zn-Br2 ARFB 的高性能。我们使用电化学技术、循环伏安法和电化学阻抗分析法分析了电极动力学,如速率常数、交换电流密度、电导率和扩散系数。结果表明,溴化锌 (ZnBr2) + 高氯酸 (HClO4) + 1-乙基-1-甲基溴化吗啉 (MEM) + N-乙基-N-甲基溴化吡咯烷 (MEP) 和 ZnBr2 + 氯化锌 (ZnCl2) + MEM + MEP 电解质的性能有所改善,其中 2Br-/Br2 氧化还原对的氧化还原动力学大大增强。高氯酸的存在释放了将溴化物(Br-)完全电氧化成溴化物(Br2)的能力,因为每一个 Br- 都涉及 1e-,这对获得高能量密度非常有利。此外,采用优化电解质配方 ZnBr2 + HClO4 + MEM+ MEP 的 Zn-Br2 RFB 显示出更高的往返效率,并在 200 次循环中表现出稳定的长循环性能,能量(EE)和库仑效率(CE)分别为 68% 和 92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dry reforming of methane and interaction between NiO and CeZrPrOx oxide in different crystallographic plane Hierarchical control of inverter-based microgrid with droop approach and proportional-integral controller Assessment of Iron(III) chloride as a catalyst for the production of hydrogen from the supercritical water gasification of microalgae In situ growth of 3D nano-array architecture Bi2S3/nickel foam assembled by interwoven nanosheets electrodes for hybrid supercapacitor Reducing resistances of all-solid-state polymer batteries via hot-press activation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1