Enhanced electrochemical performance of polycrystalline NCM811 cathode at high voltage through Te-doped LiNbO3 coating for lithium-ion batteries

Mohamed M. Abdelaal, Mohammad Alkhedher
{"title":"Enhanced electrochemical performance of polycrystalline NCM811 cathode at high voltage through Te-doped LiNbO3 coating for lithium-ion batteries","authors":"Mohamed M. Abdelaal,&nbsp;Mohammad Alkhedher","doi":"10.1016/j.nxener.2024.100216","DOIUrl":null,"url":null,"abstract":"<div><div>Ni-rich oxides with layered structures are considered promising cathode materials for high-voltage lithium-ion batteries due to their high capacity and wide potential window. However, they suffer from volume expansion and contraction, as well as Ni reactivity with electrolyte components, leading to structural degradation and continuous lithium consumption during cycling. In this study, a highly electrically and ionically layer of Te-doped LiNbO<sub>3</sub> is coated onto the surface of LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) to protect the crystal structure from cracks and side reactions with the electrolyte at high voltages (4.3 V <em>vs.</em> Li/Li<sup>+</sup>). Characterization techniques, including X-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS), are employed to analyze the structure, morphology, and electrochemical performance of the coated materials. Results show that the delivered capacity at 0.1 C increases from 192.9 to 210.8 mAh g<sup>−1</sup> and the capacity retention at 0.2 C increases from 79.7 to 89.2% after 100 cycles. Moreover, the diffusion coefficient of the coated NCM is 4.6 × 10<sup>−13</sup> cm<sup>2</sup> s<sup>−1</sup>, while that of bare NCM is only 1.5 × 10<sup>−13</sup> cm<sup>2</sup> s<sup>−1</sup> due to the reactivity of the coating layer with lithium. These findings provide valuable insights into the design and optimization of cathode materials for next-generation energy storage systems, contributing to the advancement of sustainable and efficient energy technologies.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"7 ","pages":"Article 100216"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24001212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ni-rich oxides with layered structures are considered promising cathode materials for high-voltage lithium-ion batteries due to their high capacity and wide potential window. However, they suffer from volume expansion and contraction, as well as Ni reactivity with electrolyte components, leading to structural degradation and continuous lithium consumption during cycling. In this study, a highly electrically and ionically layer of Te-doped LiNbO3 is coated onto the surface of LiNi0.8Co0.1Mn0.1O2 (NCM811) to protect the crystal structure from cracks and side reactions with the electrolyte at high voltages (4.3 V vs. Li/Li+). Characterization techniques, including X-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS), are employed to analyze the structure, morphology, and electrochemical performance of the coated materials. Results show that the delivered capacity at 0.1 C increases from 192.9 to 210.8 mAh g−1 and the capacity retention at 0.2 C increases from 79.7 to 89.2% after 100 cycles. Moreover, the diffusion coefficient of the coated NCM is 4.6 × 10−13 cm2 s−1, while that of bare NCM is only 1.5 × 10−13 cm2 s−1 due to the reactivity of the coating layer with lithium. These findings provide valuable insights into the design and optimization of cathode materials for next-generation energy storage systems, contributing to the advancement of sustainable and efficient energy technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potential uses of perovskite-based photovoltaics for hydrogen production: A pathway to sustainable energy solutions Experiments on a discretized 3D compound parabolic concentrator with a sensible heat storage Enhanced electrochemical performance of polycrystalline NCM811 cathode at high voltage through Te-doped LiNbO3 coating for lithium-ion batteries Lithium-ion batteries operating at ultrawide temperature range from −90 to +90 °C Influence of phenol-formaldehyde and melamine-formaldehyde resins on the gasification of high-pressure laminate waste materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1