Shuang Li , Xichao Zhang , Motohiko Ezawa , Yan Zhou
{"title":"Universal quantum computing based on magnetic domain-wall qubits","authors":"Shuang Li , Xichao Zhang , Motohiko Ezawa , Yan Zhou","doi":"10.1016/j.mtquan.2024.100005","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum computers allow to solve efficiently certain problems that are intractable for classical computers. For the realization of a quantum computer, a qubit design as the basic building block is a nontrivial starting point. Within a nanoscale ferromagnetic domain wall stabilized by achiral energy, two degenerate chirality forms exist which can be regarded as the two qubit states. Our numerical demonstration shows that the manipulation of spin configurations of the ferromagnetic domain walls is governed by magnetic and electric fields for single-qubit quantum gates, while the Ising exchange coupling facilitates the two-qubit gates. The incorporation of these quantum gates permits universal quantum computation. Furthermore, we discuss the estimation of the coherence time, as well as the initialization and readout of the qubits. Our findings show a practical implementation of quantum computing architectures based on the domain-wall qubits in ferromagnetic materials.</p></div>","PeriodicalId":100894,"journal":{"name":"Materials Today Quantum","volume":"2 ","pages":"Article 100005"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950257824000052/pdfft?md5=93163fa12802bb73447d892b0f582e07&pid=1-s2.0-S2950257824000052-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Quantum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950257824000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum computers allow to solve efficiently certain problems that are intractable for classical computers. For the realization of a quantum computer, a qubit design as the basic building block is a nontrivial starting point. Within a nanoscale ferromagnetic domain wall stabilized by achiral energy, two degenerate chirality forms exist which can be regarded as the two qubit states. Our numerical demonstration shows that the manipulation of spin configurations of the ferromagnetic domain walls is governed by magnetic and electric fields for single-qubit quantum gates, while the Ising exchange coupling facilitates the two-qubit gates. The incorporation of these quantum gates permits universal quantum computation. Furthermore, we discuss the estimation of the coherence time, as well as the initialization and readout of the qubits. Our findings show a practical implementation of quantum computing architectures based on the domain-wall qubits in ferromagnetic materials.