Towards dissipationless topotronics

Qing Yan , Hailong Li , Hua Jiang , X.C. Xie
{"title":"Towards dissipationless topotronics","authors":"Qing Yan ,&nbsp;Hailong Li ,&nbsp;Hua Jiang ,&nbsp;X.C. Xie","doi":"10.1016/j.mtquan.2025.100023","DOIUrl":null,"url":null,"abstract":"<div><div>Many aspects of topological physics offer a promising paradigm for the development of dissipationless electronic and quantum computing devices. Topological materials exhibit quantized transport and unidirectional edge states, which are inherently robust against backscattering and were thus previously assumed to be dissipationless. However, recent advancements in nanoscale thermal imaging have uncovered localized heat generation in these materials, highlighting an urgent need to reassess energy dissipation issues in topological systems. In this Perspective, we review recent progress in understanding energy dissipation in topological systems, including experimental observations enabled by pioneering thermal imaging techniques and theoretically proposed mechanisms. Central to this discussion is the recognition that energy dissipation arises from the evolution of carriers' energy distribution, independent of quantized electrical signatures. We discuss emerging criteria to identify dissipationless topological devices, providing guidance for the design of next-generation topotronics. Finally, we outline future directions, including the exploration of additional degrees of freedom, superconducting regimes, and non-Abelian operations, as well as the advancement of measurement techniques and scalable manufacturing processes, and especially emphasizing the importance of experimental verification of theoretical mechanisms.</div></div>","PeriodicalId":100894,"journal":{"name":"Materials Today Quantum","volume":"5 ","pages":"Article 100023"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Quantum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950257825000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many aspects of topological physics offer a promising paradigm for the development of dissipationless electronic and quantum computing devices. Topological materials exhibit quantized transport and unidirectional edge states, which are inherently robust against backscattering and were thus previously assumed to be dissipationless. However, recent advancements in nanoscale thermal imaging have uncovered localized heat generation in these materials, highlighting an urgent need to reassess energy dissipation issues in topological systems. In this Perspective, we review recent progress in understanding energy dissipation in topological systems, including experimental observations enabled by pioneering thermal imaging techniques and theoretically proposed mechanisms. Central to this discussion is the recognition that energy dissipation arises from the evolution of carriers' energy distribution, independent of quantized electrical signatures. We discuss emerging criteria to identify dissipationless topological devices, providing guidance for the design of next-generation topotronics. Finally, we outline future directions, including the exploration of additional degrees of freedom, superconducting regimes, and non-Abelian operations, as well as the advancement of measurement techniques and scalable manufacturing processes, and especially emphasizing the importance of experimental verification of theoretical mechanisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum metric non-linear Hall effect in an antiferromagnetic topological insulator thin-film EuSn2As2 Damping enhancement in YIG at millikelvin temperatures due to GGG substrate Determination of band alignment of core/shell colloidal CdSe/CdS quantum dots, by optical and X-ray photo-electron spectroscopies Towards dissipationless topotronics Linear and nonlinear Edelstein effects in chiral topological semimetals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1