Variational quantum circuit-based quantum machine learning approach for predicting corrosion inhibition efficiency of pyridine-quinoline compounds

Muhamad Akrom , Supriadi Rustad , Hermawan Kresno Dipojono
{"title":"Variational quantum circuit-based quantum machine learning approach for predicting corrosion inhibition efficiency of pyridine-quinoline compounds","authors":"Muhamad Akrom ,&nbsp;Supriadi Rustad ,&nbsp;Hermawan Kresno Dipojono","doi":"10.1016/j.mtquan.2024.100007","DOIUrl":null,"url":null,"abstract":"<div><p>This work used a variational quantum circuit (VQC) in conjunction with a quantitative structure-property relationship (QSPR) model to completely investigate the corrosion inhibition efficiency (CIE) displayed by pyridine-quinoline compounds acting as corrosion inhibitors. Compared to conventional methods like multilayer perceptron neural networks (MLPNN), the VQC model predicts the CIE more accurately. With a coefficient of determination (R<sup>2</sup>), root mean square error (RMSE), mean absolute error (MAE), and mean absolute deviation (MAD) values of 0.989, 0.027, 0.024, and 0.019, respectively, VQC performs better. The established VQC model predicts the CIE with outstanding predictive accuracy for four newly synthesized pyrimidine derivative compounds: 1-(4-fluorophenyl)- 3-(4-(pyridin-4-ylmethyl)phenyl)urea <strong>(P1)</strong>, 1-phenyl-3-(4-(pyridin-4-ylmethyl)phenyl)urea <strong>(P2)</strong>, 1-(4-methylphenyl)-3-(4-(pyridin-4-ylmethyl)phenyl)urea <strong>(P3)</strong>, and quaternary ammonium salt dimer <strong>(P4)</strong>. It generates remarkably high CIE values of 92.87, 94.05, 94.96, and 96.93 for P1, P2, P3, and P4, respectively. With its ability to streamline the testing and production processes for novel anti-corrosion materials, this innovative approach holds the potential to revolutionize the market.</p></div>","PeriodicalId":100894,"journal":{"name":"Materials Today Quantum","volume":"2 ","pages":"Article 100007"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950257824000076/pdfft?md5=7241feb2d43701adfafaece20d0bfc21&pid=1-s2.0-S2950257824000076-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Quantum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950257824000076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work used a variational quantum circuit (VQC) in conjunction with a quantitative structure-property relationship (QSPR) model to completely investigate the corrosion inhibition efficiency (CIE) displayed by pyridine-quinoline compounds acting as corrosion inhibitors. Compared to conventional methods like multilayer perceptron neural networks (MLPNN), the VQC model predicts the CIE more accurately. With a coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute deviation (MAD) values of 0.989, 0.027, 0.024, and 0.019, respectively, VQC performs better. The established VQC model predicts the CIE with outstanding predictive accuracy for four newly synthesized pyrimidine derivative compounds: 1-(4-fluorophenyl)- 3-(4-(pyridin-4-ylmethyl)phenyl)urea (P1), 1-phenyl-3-(4-(pyridin-4-ylmethyl)phenyl)urea (P2), 1-(4-methylphenyl)-3-(4-(pyridin-4-ylmethyl)phenyl)urea (P3), and quaternary ammonium salt dimer (P4). It generates remarkably high CIE values of 92.87, 94.05, 94.96, and 96.93 for P1, P2, P3, and P4, respectively. With its ability to streamline the testing and production processes for novel anti-corrosion materials, this innovative approach holds the potential to revolutionize the market.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于变量量子电路的量子机器学习方法用于预测吡啶-喹啉化合物的缓蚀效率
本研究采用变异量子电路(VQC)结合定量结构-性能关系(QSPR)模型,全面研究了作为缓蚀剂的吡啶-喹啉化合物的缓蚀效率(CIE)。与多层感知器神经网络(MLPNN)等传统方法相比,VQC 模型能更准确地预测 CIE。VQC 的判定系数 (R2)、均方根误差 (RMSE)、平均绝对误差 (MAE) 和平均绝对偏差 (MAD) 值分别为 0.989、0.027、0.024 和 0.019,表现更佳。所建立的 VQC 模型对四种新合成的嘧啶衍生物化合物的 CIE 预测准确度较高:1-(4-氟苯基)-3-(4-(吡啶-4-基甲基)苯基)脲(P1)、1-苯基-3-(4-(吡啶-4-基甲基)苯基)脲(P2)、1-(4-甲基苯基)-3-(4-(吡啶-4-基甲基)苯基)脲(P3)和季铵盐二聚体(P4)。P1、P2、P3 和 P4 的 CIE 值分别高达 92.87、94.05、94.96 和 96.93。这种创新方法能够简化新型防腐材料的测试和生产流程,有望给市场带来革命性的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological magnetic defects in a strong permanent magnet Nd2Fe14B Synthesis of temperature-sensitive boron, nitrogen and sulphur doped carbon dots and their applications Nanometric modulations of the magnetic structure of the element Nd Correlated insulators and charge density wave states in chirally twisted triple bilayer graphene Quantum machine learning for corrosion resistance in stainless steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1