Fariza Mukasheva , Muhammad Moazzam , Bota Yernaimanova , Ahmer Shehzad , Ainur Zhanbassynova , Dmitriy Berillo , Dana Akilbekova
{"title":"Design and characterization of 3D printed pore gradient hydrogel scaffold for bone tissue engineering","authors":"Fariza Mukasheva , Muhammad Moazzam , Bota Yernaimanova , Ahmer Shehzad , Ainur Zhanbassynova , Dmitriy Berillo , Dana Akilbekova","doi":"10.1016/j.bprint.2024.e00341","DOIUrl":null,"url":null,"abstract":"<div><p>Macroporous hydrogel scaffolds are widely used in tissue engineering to promote cell growth and proliferation. Aiming to enhance cell seeding efficiency and facilitate the osteodifferentiation of mesenchymal stem cells, this study demonstrates the fabrication of pore gradient biodegradable hydrogel scaffolds inspired by natural bone structure for bone tissue engineering applications. The scaffolds were fabricated via extrusion-based 3D printing, using sequential deposition of three customized Gelatin/Oxidized Alginate - based inks with subsequent cryogenic crosslinking for permanent structure fixation. The resulting constructs were characterized and featured a continuous gradient morphology with pore sizes ranging from 10 to 300 μm. The gradient scaffolds exhibited improved mechanical stability, with a compression resistance of 149 kPa, as opposed to the non-gradient scaffold's 116 kPa at 70 % strain, and a sustained degradation rate with only a 10 % loss of its initial weight within three weeks. Gradient scaffolds demonstrated a doubling of cell seeding efficiency to 47 % with dense and homogeneously distributed cellular layers, as evidenced by confocal and electron microscopy. Furthermore, the gradient scaffolds demonstrated superior osteodifferentiation, with significantly higher ALP and DMP1 production and enhanced extracellular matrix mineralization compared to gradientless macroporous scaffolds. This study provides insights into the design of macroporous scaffolds and emphasizes the advantages of pore gradient over homogeneous gradientless morphologies.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"39 ","pages":"Article e00341"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886624000137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Macroporous hydrogel scaffolds are widely used in tissue engineering to promote cell growth and proliferation. Aiming to enhance cell seeding efficiency and facilitate the osteodifferentiation of mesenchymal stem cells, this study demonstrates the fabrication of pore gradient biodegradable hydrogel scaffolds inspired by natural bone structure for bone tissue engineering applications. The scaffolds were fabricated via extrusion-based 3D printing, using sequential deposition of three customized Gelatin/Oxidized Alginate - based inks with subsequent cryogenic crosslinking for permanent structure fixation. The resulting constructs were characterized and featured a continuous gradient morphology with pore sizes ranging from 10 to 300 μm. The gradient scaffolds exhibited improved mechanical stability, with a compression resistance of 149 kPa, as opposed to the non-gradient scaffold's 116 kPa at 70 % strain, and a sustained degradation rate with only a 10 % loss of its initial weight within three weeks. Gradient scaffolds demonstrated a doubling of cell seeding efficiency to 47 % with dense and homogeneously distributed cellular layers, as evidenced by confocal and electron microscopy. Furthermore, the gradient scaffolds demonstrated superior osteodifferentiation, with significantly higher ALP and DMP1 production and enhanced extracellular matrix mineralization compared to gradientless macroporous scaffolds. This study provides insights into the design of macroporous scaffolds and emphasizes the advantages of pore gradient over homogeneous gradientless morphologies.
期刊介绍:
Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.