{"title":"Harvest to basket: understanding drivers of organic food purchase behaviour through interpretive structural modelling and MICMAC approach","authors":"Dewan Mehrab Ashrafi, Jannatul Maoua","doi":"10.1108/jm2-12-2023-0299","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this study is to examine the determinants impacting consumer behaviour in organic food consumption in Bangladesh. This study aims to identify the key factors facilitating organic food consumption and establish a framework by analysing their contextual relationships.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The study used interpretive structural modelling (ISM), relying on expert perspectives from experienced academicians and marketing professionals. A Matrice d'Impacts Croisés Multiplication Appliqués à un Classement (MICMAC) analysis was performed to assess the driving forces and interdependencies among these determinants.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The MICMAC analysis grouped determinants influencing organic food purchases into four categories. The dependent factors, like attitude and food safety, showed moderate driving forces and high dependence. Linkage determinants, such as environmental concern and price, exerted considerable influence with moderate dependence. Independent variables, especially knowledge about organic food, had a strong impact with relatively low dependence.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>This study’s insights offer valuable guidance for managers in the organic food industry, providing strategies to address consumer behaviour. Prioritising education on environmental benefits, transparent pricing, collaborating on policies, ensuring food safety and understanding determinants impacting purchase intent can aid in designing effective marketing strategies and product offerings aligned with consumer needs, ultimately promoting sustainability.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>To the best of the authors’ knowledge, this study is the first to investigate the interconnections and relative significance of determinants influencing organic food purchases, using the ISM approach and MICMAC analysis. It delves into the previously unexplored territory of understanding the relationships and hierarchical significance of these determinants in shaping consumer behaviour towards organic food purchases.</p><!--/ Abstract__block -->","PeriodicalId":16349,"journal":{"name":"Journal of Modelling in Management","volume":"7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modelling in Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jm2-12-2023-0299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this study is to examine the determinants impacting consumer behaviour in organic food consumption in Bangladesh. This study aims to identify the key factors facilitating organic food consumption and establish a framework by analysing their contextual relationships.
Design/methodology/approach
The study used interpretive structural modelling (ISM), relying on expert perspectives from experienced academicians and marketing professionals. A Matrice d'Impacts Croisés Multiplication Appliqués à un Classement (MICMAC) analysis was performed to assess the driving forces and interdependencies among these determinants.
Findings
The MICMAC analysis grouped determinants influencing organic food purchases into four categories. The dependent factors, like attitude and food safety, showed moderate driving forces and high dependence. Linkage determinants, such as environmental concern and price, exerted considerable influence with moderate dependence. Independent variables, especially knowledge about organic food, had a strong impact with relatively low dependence.
Practical implications
This study’s insights offer valuable guidance for managers in the organic food industry, providing strategies to address consumer behaviour. Prioritising education on environmental benefits, transparent pricing, collaborating on policies, ensuring food safety and understanding determinants impacting purchase intent can aid in designing effective marketing strategies and product offerings aligned with consumer needs, ultimately promoting sustainability.
Originality/value
To the best of the authors’ knowledge, this study is the first to investigate the interconnections and relative significance of determinants influencing organic food purchases, using the ISM approach and MICMAC analysis. It delves into the previously unexplored territory of understanding the relationships and hierarchical significance of these determinants in shaping consumer behaviour towards organic food purchases.
期刊介绍:
Journal of Modelling in Management (JM2) provides a forum for academics and researchers with a strong interest in business and management modelling. The journal analyses the conceptual antecedents and theoretical underpinnings leading to research modelling processes which derive useful consequences in terms of management science, business and management implementation and applications. JM2 is focused on the utilization of management data, which is amenable to research modelling processes, and welcomes academic papers that not only encompass the whole research process (from conceptualization to managerial implications) but also make explicit the individual links between ''antecedents and modelling'' (how to tackle certain problems) and ''modelling and consequences'' (how to apply the models and draw appropriate conclusions). The journal is particularly interested in innovative methodological and statistical modelling processes and those models that result in clear and justified managerial decisions. JM2 specifically promotes and supports research writing, that engages in an academically rigorous manner, in areas related to research modelling such as: A priori theorizing conceptual models, Artificial intelligence, machine learning, Association rule mining, clustering, feature selection, Business analytics: Descriptive, Predictive, and Prescriptive Analytics, Causal analytics: structural equation modeling, partial least squares modeling, Computable general equilibrium models, Computer-based models, Data mining, data analytics with big data, Decision support systems and business intelligence, Econometric models, Fuzzy logic modeling, Generalized linear models, Multi-attribute decision-making models, Non-linear models, Optimization, Simulation models, Statistical decision models, Statistical inference making and probabilistic modeling, Text mining, web mining, and visual analytics, Uncertainty-based reasoning models.