{"title":"Multiobjective unrelated parallel machines scheduling problem with periodic maintenance activities and dependent processing times","authors":"Mohammad Yaghtin, Youness Javid","doi":"10.1108/jm2-09-2023-0198","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this research is to address the complex multiobjective unrelated parallel machine scheduling problem with real-world constraints, including sequence-dependent setup times and periodic machine maintenance. The primary goal is to minimize total tardiness, earliness and total completion times simultaneously. This study aims to provide effective solution methods, including a Mixed-Integer Programming (MIP) model, an Epsilon-constraint method and the Nondominated Sorting Genetic Algorithm (NSGA-II), to offer valuable insights into solving large-sized instances of this challenging problem.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This study addresses a multiobjective unrelated parallel machine scheduling problem with sequence-dependent setup times and periodic machine maintenance activities. An MIP model is introduced to formulate the problem, and an Epsilon-constraint method is applied for a solution. To handle the NP-hard nature of the problem for larger instances, an NSGA-II is developed. The research involves the creation of 45 problem instances for computational experiments, which evaluate the performance of the algorithms in terms of proposed measures.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The research findings demonstrate the effectiveness of the proposed solution approaches for the multiobjective unrelated parallel machine scheduling problem. Computational experiments on 45 generated problem instances reveal that the NSGA-II algorithm outperforms the Epsilon-constraint method, particularly for larger instances. The algorithms successfully minimize total tardiness, earliness and total completion times, showcasing their practical applicability and efficiency in handling real-world scheduling scenarios.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This study contributes original value by addressing a complex multiobjective unrelated parallel machine scheduling problem with real-world constraints, including sequence-dependent setup times and periodic machine maintenance activities. The introduction of an MIP model, the application of the Epsilon-constraint method and the development of the NSGA-II algorithm offer innovative approaches to solving this NP-hard problem. The research provides valuable insights into efficient scheduling methods applicable in various industries, enhancing decision-making processes and operational efficiency.</p><!--/ Abstract__block -->","PeriodicalId":16349,"journal":{"name":"Journal of Modelling in Management","volume":"46 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modelling in Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jm2-09-2023-0198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this research is to address the complex multiobjective unrelated parallel machine scheduling problem with real-world constraints, including sequence-dependent setup times and periodic machine maintenance. The primary goal is to minimize total tardiness, earliness and total completion times simultaneously. This study aims to provide effective solution methods, including a Mixed-Integer Programming (MIP) model, an Epsilon-constraint method and the Nondominated Sorting Genetic Algorithm (NSGA-II), to offer valuable insights into solving large-sized instances of this challenging problem.
Design/methodology/approach
This study addresses a multiobjective unrelated parallel machine scheduling problem with sequence-dependent setup times and periodic machine maintenance activities. An MIP model is introduced to formulate the problem, and an Epsilon-constraint method is applied for a solution. To handle the NP-hard nature of the problem for larger instances, an NSGA-II is developed. The research involves the creation of 45 problem instances for computational experiments, which evaluate the performance of the algorithms in terms of proposed measures.
Findings
The research findings demonstrate the effectiveness of the proposed solution approaches for the multiobjective unrelated parallel machine scheduling problem. Computational experiments on 45 generated problem instances reveal that the NSGA-II algorithm outperforms the Epsilon-constraint method, particularly for larger instances. The algorithms successfully minimize total tardiness, earliness and total completion times, showcasing their practical applicability and efficiency in handling real-world scheduling scenarios.
Originality/value
This study contributes original value by addressing a complex multiobjective unrelated parallel machine scheduling problem with real-world constraints, including sequence-dependent setup times and periodic machine maintenance activities. The introduction of an MIP model, the application of the Epsilon-constraint method and the development of the NSGA-II algorithm offer innovative approaches to solving this NP-hard problem. The research provides valuable insights into efficient scheduling methods applicable in various industries, enhancing decision-making processes and operational efficiency.
期刊介绍:
Journal of Modelling in Management (JM2) provides a forum for academics and researchers with a strong interest in business and management modelling. The journal analyses the conceptual antecedents and theoretical underpinnings leading to research modelling processes which derive useful consequences in terms of management science, business and management implementation and applications. JM2 is focused on the utilization of management data, which is amenable to research modelling processes, and welcomes academic papers that not only encompass the whole research process (from conceptualization to managerial implications) but also make explicit the individual links between ''antecedents and modelling'' (how to tackle certain problems) and ''modelling and consequences'' (how to apply the models and draw appropriate conclusions). The journal is particularly interested in innovative methodological and statistical modelling processes and those models that result in clear and justified managerial decisions. JM2 specifically promotes and supports research writing, that engages in an academically rigorous manner, in areas related to research modelling such as: A priori theorizing conceptual models, Artificial intelligence, machine learning, Association rule mining, clustering, feature selection, Business analytics: Descriptive, Predictive, and Prescriptive Analytics, Causal analytics: structural equation modeling, partial least squares modeling, Computable general equilibrium models, Computer-based models, Data mining, data analytics with big data, Decision support systems and business intelligence, Econometric models, Fuzzy logic modeling, Generalized linear models, Multi-attribute decision-making models, Non-linear models, Optimization, Simulation models, Statistical decision models, Statistical inference making and probabilistic modeling, Text mining, web mining, and visual analytics, Uncertainty-based reasoning models.