Shweta V. Matey, Dadarao N. Raut, Rajesh B. Pansare, Ravi Kant
{"title":"A hybrid framework to prioritize the performance metrics for Blockchain technology adoption in manufacturing industries","authors":"Shweta V. Matey, Dadarao N. Raut, Rajesh B. Pansare, Ravi Kant","doi":"10.1108/jm2-02-2024-0058","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Blockchain technology (BCT) can play a vital role in manufacturing industries by providing visibility and real-time transparency. With BCT adoption, manufacturers can achieve higher productivity, better quality, flexibility and cost-effectiveness. The current study aims to prioritize the performance metrics and ranking of enablers that may influence the adoption of BCT in manufacturing industries through a hybrid framework.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Through an extensive literature review, 4 major criteria with 26 enablers were identified. Pythagorean fuzzy analytical hierarchy process (AHP) method was used to compute the weights of the enablers and the Pythagorean fuzzy combined compromise solution (Co-Co-So) method was used to prioritize the 17-performance metrics. Sensitivity analysis was then carried out to check the robustness of the developed framework.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>According to the results, data security enablers were the most significant among the major criteria, followed by technology-oriented enablers, sustainability and human resources and quality-related enablers. Further, the ranking of performance metrics shows that data hacking complaints per year, data storage capacity and number of advanced technologies available for BCT are the top three important performance metrics. Framework robustness was confirmed by sensitivity analysis.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>The developed framework will contribute to understanding and simplifying the BCT implementation process in manufacturing industries to a significant level. Practitioners and managers may use the developed framework to facilitate BCT adoption and evaluate the performance of the manufacturing system.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This study can be considered as the first attempt to the best of the author’s knowledge as no such hybrid framework combining enablers and performance indicators was developed earlier.</p><!--/ Abstract__block -->","PeriodicalId":16349,"journal":{"name":"Journal of Modelling in Management","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modelling in Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jm2-02-2024-0058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Blockchain technology (BCT) can play a vital role in manufacturing industries by providing visibility and real-time transparency. With BCT adoption, manufacturers can achieve higher productivity, better quality, flexibility and cost-effectiveness. The current study aims to prioritize the performance metrics and ranking of enablers that may influence the adoption of BCT in manufacturing industries through a hybrid framework.
Design/methodology/approach
Through an extensive literature review, 4 major criteria with 26 enablers were identified. Pythagorean fuzzy analytical hierarchy process (AHP) method was used to compute the weights of the enablers and the Pythagorean fuzzy combined compromise solution (Co-Co-So) method was used to prioritize the 17-performance metrics. Sensitivity analysis was then carried out to check the robustness of the developed framework.
Findings
According to the results, data security enablers were the most significant among the major criteria, followed by technology-oriented enablers, sustainability and human resources and quality-related enablers. Further, the ranking of performance metrics shows that data hacking complaints per year, data storage capacity and number of advanced technologies available for BCT are the top three important performance metrics. Framework robustness was confirmed by sensitivity analysis.
Practical implications
The developed framework will contribute to understanding and simplifying the BCT implementation process in manufacturing industries to a significant level. Practitioners and managers may use the developed framework to facilitate BCT adoption and evaluate the performance of the manufacturing system.
Originality/value
This study can be considered as the first attempt to the best of the author’s knowledge as no such hybrid framework combining enablers and performance indicators was developed earlier.
期刊介绍:
Journal of Modelling in Management (JM2) provides a forum for academics and researchers with a strong interest in business and management modelling. The journal analyses the conceptual antecedents and theoretical underpinnings leading to research modelling processes which derive useful consequences in terms of management science, business and management implementation and applications. JM2 is focused on the utilization of management data, which is amenable to research modelling processes, and welcomes academic papers that not only encompass the whole research process (from conceptualization to managerial implications) but also make explicit the individual links between ''antecedents and modelling'' (how to tackle certain problems) and ''modelling and consequences'' (how to apply the models and draw appropriate conclusions). The journal is particularly interested in innovative methodological and statistical modelling processes and those models that result in clear and justified managerial decisions. JM2 specifically promotes and supports research writing, that engages in an academically rigorous manner, in areas related to research modelling such as: A priori theorizing conceptual models, Artificial intelligence, machine learning, Association rule mining, clustering, feature selection, Business analytics: Descriptive, Predictive, and Prescriptive Analytics, Causal analytics: structural equation modeling, partial least squares modeling, Computable general equilibrium models, Computer-based models, Data mining, data analytics with big data, Decision support systems and business intelligence, Econometric models, Fuzzy logic modeling, Generalized linear models, Multi-attribute decision-making models, Non-linear models, Optimization, Simulation models, Statistical decision models, Statistical inference making and probabilistic modeling, Text mining, web mining, and visual analytics, Uncertainty-based reasoning models.