{"title":"Anti-Instability of Complex Ghost","authors":"Jisuke Kubo, Taichiro Kugo","doi":"10.1093/ptep/ptae053","DOIUrl":null,"url":null,"abstract":"We argue that Lee-Wick’s complex ghost appearing in any higher derivative theory is stable and its asymptotic field exists. It may be more appropriate to call it “anti-unstable” in the sense that, the more the ghost ‘decays’ into lighter ordinary particles, the larger the probability the ghost remains as itself becomes. This is explicitly shown by analyzing the two-point functions of the ghost Heisenberg field which is obtained as an exact result in the N → ∞ limit in a massive scalar ghost theory with light O(N)-vector scalar matter. The anti-instability is a consequence of the fact that the poles of the complex ghost propagator are located on the physical sheet in the complex plane of four-momentum squared. This should be contrasted to the case of the ordinary unstable particle, whose propagator has no pole on the physical sheet.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae053","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We argue that Lee-Wick’s complex ghost appearing in any higher derivative theory is stable and its asymptotic field exists. It may be more appropriate to call it “anti-unstable” in the sense that, the more the ghost ‘decays’ into lighter ordinary particles, the larger the probability the ghost remains as itself becomes. This is explicitly shown by analyzing the two-point functions of the ghost Heisenberg field which is obtained as an exact result in the N → ∞ limit in a massive scalar ghost theory with light O(N)-vector scalar matter. The anti-instability is a consequence of the fact that the poles of the complex ghost propagator are located on the physical sheet in the complex plane of four-momentum squared. This should be contrasted to the case of the ordinary unstable particle, whose propagator has no pole on the physical sheet.