{"title":"Bootstrap prediction inference of nonlinear autoregressive models","authors":"Kejin Wu, Dimitris N. Politis","doi":"10.1111/jtsa.12739","DOIUrl":null,"url":null,"abstract":"<p>The nonlinear autoregressive (NLAR) model plays an important role in modeling and predicting time series. One-step ahead prediction is straightforward using the NLAR model, but the multi-step ahead prediction is cumbersome. For instance, iterating the one-step ahead predictor is a convenient strategy for linear autoregressive (LAR) models, but it is suboptimal under NLAR. In this article, we first propose a simulation and/or bootstrap algorithm to construct optimal point predictors under an <span></span><math>\n <mrow>\n <msub>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow></math> or <span></span><math>\n <mrow>\n <msub>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow></math> loss criterion. In addition, we construct bootstrap prediction intervals in the multi-step ahead prediction problem; in particular, we develop an asymptotically valid quantile prediction interval as well as a pertinent prediction interval for future values. To correct the undercoverage of prediction intervals with finite samples, we further employ predictive – as opposed to fitted – residuals in the bootstrap process. Simulation and empirical studies are also given to substantiate the finite sample performance of our methods.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12739","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The nonlinear autoregressive (NLAR) model plays an important role in modeling and predicting time series. One-step ahead prediction is straightforward using the NLAR model, but the multi-step ahead prediction is cumbersome. For instance, iterating the one-step ahead predictor is a convenient strategy for linear autoregressive (LAR) models, but it is suboptimal under NLAR. In this article, we first propose a simulation and/or bootstrap algorithm to construct optimal point predictors under an or loss criterion. In addition, we construct bootstrap prediction intervals in the multi-step ahead prediction problem; in particular, we develop an asymptotically valid quantile prediction interval as well as a pertinent prediction interval for future values. To correct the undercoverage of prediction intervals with finite samples, we further employ predictive – as opposed to fitted – residuals in the bootstrap process. Simulation and empirical studies are also given to substantiate the finite sample performance of our methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.