Time Series for QFFE: Special Issue of the Journal of Time Series Analysis

IF 1.2 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Time Series Analysis Pub Date : 2025-01-12 DOI:10.1111/jtsa.12814
Christian Francq, Christophe Hurlin, Sébastien Laurent, Jean-Michel Zakoian
{"title":"Time Series for QFFE: Special Issue of the Journal of Time Series Analysis","authors":"Christian Francq,&nbsp;Christophe Hurlin,&nbsp;Sébastien Laurent,&nbsp;Jean-Michel Zakoian","doi":"10.1111/jtsa.12814","DOIUrl":null,"url":null,"abstract":"<p>QFFE stands for Quantitative Finance and Financial Econometrics conference, an event organized by Sébastien Laurent in Marseille every year since 2018. Each year there are two keynote speakers and two guest speakers, and around 60 selected papers are presented. The program for next year and previous years can be found here. The conference is preceded by a spring school, which offers doctoral students, post-doc, and young academics the opportunity to attend doctoral-level courses.</p><p>The QFFE conference is part of the ANR-funded project MLEforRisk (ANR-21-CE26-0007), which stands for Machine Learning and Econometrics for Risk Measurement in Finance. The project seeks to enhance our understanding of the advantages and limitations of integrating econometric methods with machine learning for measuring financial risks. This multidisciplinary initiative bridges the fields of finance and financial econometrics, bringing together a team of junior and senior researchers with expertise in management, economics, applied mathematics, and data science. The project aims to advance both theoretical insights and practical applications, fostering innovation at the intersection of these disciplines.</p><p>Since financial data such as stock prices, interest rates, and exchange rates are observed over time, time series analysis is crucial in finance. Finance professionals and academics often rely on fundamental time series models, such as ARMA, as well as essential time series techniques such as spectral analysis. Financial researchers are therefore naturally attracted to any new developments in time series. Econometricians have also developed new time series models and methods to capture the specificities of financial data. Contributions of econometricians include cointegration and error correction models, GARCH and stochastic volatility models, score-driven models, VAR models, Markov switching models, non-causal models, simulation-based inference, state space models, and Kalman filters, realized volatility measures, the Black–Scholes model, and factor models. The field of application of all these time series models and techniques is obviously not limited to finance. The aim of this special issue is to present some recent examples of the interface between time series analysis and finance.</p><p>We are very grateful to these authors. We would also like to thank the anonymous reviewers for their valuable review and feedback, which helped to improve the quality of this special issue. Special thanks go to Robert Taylor, Editor-in-Chief of the <i>Journal of Time Series Analysis</i>, for supporting this project, as well as to Priscilla Goldby for her invaluable help.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"46 2","pages":"214-215"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12814","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12814","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

QFFE stands for Quantitative Finance and Financial Econometrics conference, an event organized by Sébastien Laurent in Marseille every year since 2018. Each year there are two keynote speakers and two guest speakers, and around 60 selected papers are presented. The program for next year and previous years can be found here. The conference is preceded by a spring school, which offers doctoral students, post-doc, and young academics the opportunity to attend doctoral-level courses.

The QFFE conference is part of the ANR-funded project MLEforRisk (ANR-21-CE26-0007), which stands for Machine Learning and Econometrics for Risk Measurement in Finance. The project seeks to enhance our understanding of the advantages and limitations of integrating econometric methods with machine learning for measuring financial risks. This multidisciplinary initiative bridges the fields of finance and financial econometrics, bringing together a team of junior and senior researchers with expertise in management, economics, applied mathematics, and data science. The project aims to advance both theoretical insights and practical applications, fostering innovation at the intersection of these disciplines.

Since financial data such as stock prices, interest rates, and exchange rates are observed over time, time series analysis is crucial in finance. Finance professionals and academics often rely on fundamental time series models, such as ARMA, as well as essential time series techniques such as spectral analysis. Financial researchers are therefore naturally attracted to any new developments in time series. Econometricians have also developed new time series models and methods to capture the specificities of financial data. Contributions of econometricians include cointegration and error correction models, GARCH and stochastic volatility models, score-driven models, VAR models, Markov switching models, non-causal models, simulation-based inference, state space models, and Kalman filters, realized volatility measures, the Black–Scholes model, and factor models. The field of application of all these time series models and techniques is obviously not limited to finance. The aim of this special issue is to present some recent examples of the interface between time series analysis and finance.

We are very grateful to these authors. We would also like to thank the anonymous reviewers for their valuable review and feedback, which helped to improve the quality of this special issue. Special thanks go to Robert Taylor, Editor-in-Chief of the Journal of Time Series Analysis, for supporting this project, as well as to Priscilla Goldby for her invaluable help.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Time Series Analysis
Journal of Time Series Analysis 数学-数学跨学科应用
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering. The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.
期刊最新文献
Issue Information Editorial Announcement: Journal of Time Series Analysis Distinguished Authors 2024 Time Series for QFFE: Special Issue of the Journal of Time Series Analysis High-Frequency Instruments and Identification-Robust Inference for Stochastic Volatility Models Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1