High-Frequency Instruments and Identification-Robust Inference for Stochastic Volatility Models

IF 1.2 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Time Series Analysis Pub Date : 2025-01-12 DOI:10.1111/jtsa.12812
Md. Nazmul Ahsan, Jean-Marie Dufour
{"title":"High-Frequency Instruments and Identification-Robust Inference for Stochastic Volatility Models","authors":"Md. Nazmul Ahsan,&nbsp;Jean-Marie Dufour","doi":"10.1111/jtsa.12812","DOIUrl":null,"url":null,"abstract":"<p>We introduce a novel class of stochastic volatility models, which can utilize and relate many high-frequency realized volatility (RV) measures to latent volatility. Instrumental variable methods provide a unified framework for estimation and testing. We study parameter inference problems in the proposed framework with nonstationary stochastic volatility and exogenous predictors in the latent volatility process. Identification-robust methods are developed for a joint hypothesis involving the volatility persistence parameter and the autocorrelation parameter of the composite error (or the noise ratio). For inference about the volatility persistence parameter, projection techniques are applied. The proposed tests include Anderson-Rubin-type tests and their point-optimal versions. For distributional theory, we provide finite-sample tests and confidence sets for Gaussian errors, establish exact Monte Carlo test procedures for non-Gaussian errors (possibly heavy-tailed), and show asymptotic validity under weaker assumptions. Simulation results show that the proposed tests outperform the asymptotic test regarding size and exhibit excellent power in empirically realistic settings. The proposed inference methods are applied to IBM's price and option data (2009–2013). We consider 175 different instruments (IVs) spanning 22 classes and analyze their ability to describe the low-frequency volatility. IVs are compared based on the average length of the proposed identification-robust confidence intervals. The superior instrument set mostly comprises 5-min HF realized measures, and these IVs produce confidence sets which show that the volatility process is nearly unit-root. In addition, we find RVs with higher frequency yield wider confidence intervals than RVs with slightly lower frequency, indicating that these confidence intervals adjust to absorb market microstructure noise. Furthermore, when we consider irrelevant or weak IVs (jumps and signed jumps), the proposed tests produce unbounded confidence intervals. We also find that both RV and BV measures produce almost identical confidence intervals across all 14 subclasses, confirming that our methodology is robust in the presence of jumps. Finally, although jumps contain little information regarding the low-frequency volatility, we find evidence that there may be a nonlinear relationship between jumps and low-frequency volatility.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"46 2","pages":"216-234"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12812","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12812","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a novel class of stochastic volatility models, which can utilize and relate many high-frequency realized volatility (RV) measures to latent volatility. Instrumental variable methods provide a unified framework for estimation and testing. We study parameter inference problems in the proposed framework with nonstationary stochastic volatility and exogenous predictors in the latent volatility process. Identification-robust methods are developed for a joint hypothesis involving the volatility persistence parameter and the autocorrelation parameter of the composite error (or the noise ratio). For inference about the volatility persistence parameter, projection techniques are applied. The proposed tests include Anderson-Rubin-type tests and their point-optimal versions. For distributional theory, we provide finite-sample tests and confidence sets for Gaussian errors, establish exact Monte Carlo test procedures for non-Gaussian errors (possibly heavy-tailed), and show asymptotic validity under weaker assumptions. Simulation results show that the proposed tests outperform the asymptotic test regarding size and exhibit excellent power in empirically realistic settings. The proposed inference methods are applied to IBM's price and option data (2009–2013). We consider 175 different instruments (IVs) spanning 22 classes and analyze their ability to describe the low-frequency volatility. IVs are compared based on the average length of the proposed identification-robust confidence intervals. The superior instrument set mostly comprises 5-min HF realized measures, and these IVs produce confidence sets which show that the volatility process is nearly unit-root. In addition, we find RVs with higher frequency yield wider confidence intervals than RVs with slightly lower frequency, indicating that these confidence intervals adjust to absorb market microstructure noise. Furthermore, when we consider irrelevant or weak IVs (jumps and signed jumps), the proposed tests produce unbounded confidence intervals. We also find that both RV and BV measures produce almost identical confidence intervals across all 14 subclasses, confirming that our methodology is robust in the presence of jumps. Finally, although jumps contain little information regarding the low-frequency volatility, we find evidence that there may be a nonlinear relationship between jumps and low-frequency volatility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Time Series Analysis
Journal of Time Series Analysis 数学-数学跨学科应用
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering. The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.
期刊最新文献
Issue Information Editorial Announcement: Journal of Time Series Analysis Distinguished Authors 2024 Time Series for QFFE: Special Issue of the Journal of Time Series Analysis High-Frequency Instruments and Identification-Robust Inference for Stochastic Volatility Models Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1