A class of transformed joint quantile time series models with applications to health studies

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Computational Statistics Pub Date : 2024-04-01 DOI:10.1007/s00180-024-01484-3
Fahimeh Tourani-Farani, Zeynab Aghabazaz, Iraj Kazemi
{"title":"A class of transformed joint quantile time series models with applications to health studies","authors":"Fahimeh Tourani-Farani, Zeynab Aghabazaz, Iraj Kazemi","doi":"10.1007/s00180-024-01484-3","DOIUrl":null,"url":null,"abstract":"<p>Extensions of quantile regression modeling for time series analysis are extensively employed in medical and health studies. This study introduces a specific class of transformed quantile-dispersion regression models for non-stationary time series. These models possess the flexibility to incorporate the time-varying structure into the model specification, enabling precise predictions for future decisions. Our proposed modeling methodology applies to dynamic processes characterized by high variation and possible periodicity, relying on a non-linear framework. Additionally, unlike the transformed time series model, our approach directly interprets the regression parameters concerning the initial response. For computational purposes, we present an iteratively reweighted least squares algorithm. To assess the performance of our model, we conduct simulation experiments. To illustrate the modeling strategy, we analyze time-series measurements of influenza infection and daily COVID-19 deaths.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"96 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01484-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Extensions of quantile regression modeling for time series analysis are extensively employed in medical and health studies. This study introduces a specific class of transformed quantile-dispersion regression models for non-stationary time series. These models possess the flexibility to incorporate the time-varying structure into the model specification, enabling precise predictions for future decisions. Our proposed modeling methodology applies to dynamic processes characterized by high variation and possible periodicity, relying on a non-linear framework. Additionally, unlike the transformed time series model, our approach directly interprets the regression parameters concerning the initial response. For computational purposes, we present an iteratively reweighted least squares algorithm. To assess the performance of our model, we conduct simulation experiments. To illustrate the modeling strategy, we analyze time-series measurements of influenza infection and daily COVID-19 deaths.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类转化联合量化时间序列模型在健康研究中的应用
用于时间序列分析的量化回归模型的扩展在医学和健康研究中得到广泛应用。本研究为非平稳时间序列引入了一类特定的转换量化离散回归模型。这些模型具有灵活性,可将时变结构纳入模型规范,从而为未来决策提供精确预测。我们提出的建模方法适用于以高变化和可能的周期性为特征的动态过程,依赖于非线性框架。此外,与转换后的时间序列模型不同,我们的方法直接解释了有关初始响应的回归参数。为了便于计算,我们提出了一种迭代加权最小二乘法算法。为了评估模型的性能,我们进行了模拟实验。为了说明建模策略,我们分析了流感感染和 COVID-19 每日死亡人数的时间序列测量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
期刊最新文献
Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification Multivariate approaches to investigate the home and away behavior of football teams playing football matches Kendall correlations and radar charts to include goals for and goals against in soccer rankings Bayesian adaptive lasso quantile regression with non-ignorable missing responses Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1