Gang Dou;Wenhai Guo;Lingtong Kong;Junwei Sun;Mei Guo;Shiping Wen
{"title":"Operant Conditioning Neuromorphic Circuit With Addictiveness and Time Memory for Automatic Learning","authors":"Gang Dou;Wenhai Guo;Lingtong Kong;Junwei Sun;Mei Guo;Shiping Wen","doi":"10.1109/TBCAS.2024.3388673","DOIUrl":null,"url":null,"abstract":"Most operant conditioning circuits predominantly focus on simple feedback process, few studies consider the intricacies of feedback outcomes and the uncertainty of feedback time. This paper proposes a neuromorphic circuit based on operant conditioning with addictiveness and time memory for automatic learning. The circuit is mainly composed of hunger output module, neuron module, excitement output module, memristor-based decision module, and memory and feedback generation module. In the circuit, the process of output excitement and addiction in stochastic feedback is achieved. The memory of interval between the two rewards is formed. The circuit can adapt to complex scenarios with these functions. In addition, hunger and satiety are introduced to realize the interaction between biological behavior and exploration desire, which enables the circuit to continuously reshape its memories and actions. The process of operant conditioning theory for automatic learning is accomplished. The study of operant conditioning can serve as a reference for more intelligent brain-inspired neural systems.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10500750/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Most operant conditioning circuits predominantly focus on simple feedback process, few studies consider the intricacies of feedback outcomes and the uncertainty of feedback time. This paper proposes a neuromorphic circuit based on operant conditioning with addictiveness and time memory for automatic learning. The circuit is mainly composed of hunger output module, neuron module, excitement output module, memristor-based decision module, and memory and feedback generation module. In the circuit, the process of output excitement and addiction in stochastic feedback is achieved. The memory of interval between the two rewards is formed. The circuit can adapt to complex scenarios with these functions. In addition, hunger and satiety are introduced to realize the interaction between biological behavior and exploration desire, which enables the circuit to continuously reshape its memories and actions. The process of operant conditioning theory for automatic learning is accomplished. The study of operant conditioning can serve as a reference for more intelligent brain-inspired neural systems.