{"title":"Ensemble learning methods of inference for spatially stratified infectious disease systems","authors":"Jeffrey Peitsch, Gyanendra Pokharel, Shakhawat Hossain","doi":"10.1515/ijb-2023-0102","DOIUrl":null,"url":null,"abstract":"Individual level models are a class of mechanistic models that are widely used to infer infectious disease transmission dynamics. These models incorporate individual level covariate information accounting for population heterogeneity and are generally fitted in a Bayesian Markov chain Monte Carlo (MCMC) framework. However, Bayesian MCMC methods of inference are computationally expensive for large data sets. This issue becomes more severe when applied to infectious disease data collected from spatially heterogeneous populations, as the number of covariates increases. In addition, summary statistics over the global population may not capture the true spatio-temporal dynamics of disease transmission. In this study we propose to use ensemble learning methods to predict epidemic generating models instead of time consuming Bayesian MCMC method. We apply these methods to infer disease transmission dynamics over spatially clustered populations, considering the clusters as natural strata instead of a global population. We compare the performance of two tree-based ensemble learning techniques: random forest and gradient boosting. These methods are applied to the 2001 foot-and-mouth disease epidemic in the U.K. and evaluated using simulated data from a clustered population. It is shown that the spatially clustered data can help to predict epidemic generating models more accurately than the global data.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2023-0102","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Individual level models are a class of mechanistic models that are widely used to infer infectious disease transmission dynamics. These models incorporate individual level covariate information accounting for population heterogeneity and are generally fitted in a Bayesian Markov chain Monte Carlo (MCMC) framework. However, Bayesian MCMC methods of inference are computationally expensive for large data sets. This issue becomes more severe when applied to infectious disease data collected from spatially heterogeneous populations, as the number of covariates increases. In addition, summary statistics over the global population may not capture the true spatio-temporal dynamics of disease transmission. In this study we propose to use ensemble learning methods to predict epidemic generating models instead of time consuming Bayesian MCMC method. We apply these methods to infer disease transmission dynamics over spatially clustered populations, considering the clusters as natural strata instead of a global population. We compare the performance of two tree-based ensemble learning techniques: random forest and gradient boosting. These methods are applied to the 2001 foot-and-mouth disease epidemic in the U.K. and evaluated using simulated data from a clustered population. It is shown that the spatially clustered data can help to predict epidemic generating models more accurately than the global data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.