Ensemble learning methods of inference for spatially stratified infectious disease systems

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-09 DOI:10.1515/ijb-2023-0102
Jeffrey Peitsch, Gyanendra Pokharel, Shakhawat Hossain
{"title":"Ensemble learning methods of inference for spatially stratified infectious disease systems","authors":"Jeffrey Peitsch, Gyanendra Pokharel, Shakhawat Hossain","doi":"10.1515/ijb-2023-0102","DOIUrl":null,"url":null,"abstract":"Individual level models are a class of mechanistic models that are widely used to infer infectious disease transmission dynamics. These models incorporate individual level covariate information accounting for population heterogeneity and are generally fitted in a Bayesian Markov chain Monte Carlo (MCMC) framework. However, Bayesian MCMC methods of inference are computationally expensive for large data sets. This issue becomes more severe when applied to infectious disease data collected from spatially heterogeneous populations, as the number of covariates increases. In addition, summary statistics over the global population may not capture the true spatio-temporal dynamics of disease transmission. In this study we propose to use ensemble learning methods to predict epidemic generating models instead of time consuming Bayesian MCMC method. We apply these methods to infer disease transmission dynamics over spatially clustered populations, considering the clusters as natural strata instead of a global population. We compare the performance of two tree-based ensemble learning techniques: random forest and gradient boosting. These methods are applied to the 2001 foot-and-mouth disease epidemic in the U.K. and evaluated using simulated data from a clustered population. It is shown that the spatially clustered data can help to predict epidemic generating models more accurately than the global data.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2023-0102","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Individual level models are a class of mechanistic models that are widely used to infer infectious disease transmission dynamics. These models incorporate individual level covariate information accounting for population heterogeneity and are generally fitted in a Bayesian Markov chain Monte Carlo (MCMC) framework. However, Bayesian MCMC methods of inference are computationally expensive for large data sets. This issue becomes more severe when applied to infectious disease data collected from spatially heterogeneous populations, as the number of covariates increases. In addition, summary statistics over the global population may not capture the true spatio-temporal dynamics of disease transmission. In this study we propose to use ensemble learning methods to predict epidemic generating models instead of time consuming Bayesian MCMC method. We apply these methods to infer disease transmission dynamics over spatially clustered populations, considering the clusters as natural strata instead of a global population. We compare the performance of two tree-based ensemble learning techniques: random forest and gradient boosting. These methods are applied to the 2001 foot-and-mouth disease epidemic in the U.K. and evaluated using simulated data from a clustered population. It is shown that the spatially clustered data can help to predict epidemic generating models more accurately than the global data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间分层传染病系统推理的集合学习方法
个体水平模型是一类广泛用于推断传染病传播动态的机理模型。这些模型结合了个体水平的协变量信息,考虑了种群的异质性,通常在贝叶斯马尔科夫链蒙特卡罗(MCMC)框架内进行拟合。然而,对于大型数据集来说,贝叶斯 MCMC 推理方法的计算成本很高。当应用于从空间异质性人群中收集的传染病数据时,随着协变量数量的增加,这一问题变得更加严重。此外,全球人口的汇总统计可能无法捕捉到疾病传播的真实时空动态。在本研究中,我们建议使用集合学习方法来预测流行病生成模型,而不是耗时的贝叶斯 MCMC 方法。我们将这些方法应用于推断空间聚类人群的疾病传播动态,将聚类视为自然分层而非总体人群。我们比较了两种基于树的集合学习技术:随机森林和梯度提升的性能。这些方法被应用于 2001 年英国口蹄疫疫情,并使用聚类种群的模拟数据进行了评估。结果表明,与全局数据相比,空间聚类数据有助于更准确地预测流行病生成模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1