Trials enroll a large number of subjects in order to attain power, making them expensive and time-consuming. Sample size calculations are often performed with the assumption of an unadjusted analysis, even if the trial analysis plan specifies a more efficient estimator (e.g. ANCOVA). This leads to conservative estimates of required sample sizes and an opportunity for savings. Here we show that a relatively simple formula can be used to estimate the power of any two-arm, single-timepoint trial analyzed with a semiparametric efficient estimator, regardless of the domain of the outcome or kind of treatment effect (e.g. odds ratio, mean difference). Since an efficient estimator attains the minimum possible asymptotic variance, this allows for the design of trials that are as small as possible while still attaining design power and control of type I error. The required sample size calculation is parsimonious and requires the analyst to provide only a small number of population parameters. We verify in simulation that the large-sample properties of trials designed this way attain their nominal values. Lastly, we demonstrate how to use this formula in the "design" (and subsequent reanalysis) of a real randomized trial and show that fewer subjects are required to attain the same design power when a semiparametric efficient estimator is accounted for at the design stage.
Cancer tissue samples obtained via biopsy or surgery were examined for specific gene mutations by genetic testing to inform treatment. Precision medicine, which considers not only the cancer type and location, but also the genetic information, environment, and lifestyle of each patient, can be applied for disease prevention and treatment in individual patients. The number of patient-specific characteristics, including biomarkers, has been increasing with time; these characteristics are highly correlated with outcomes. The number of patients at the beginning of early-phase clinical trials is often limited. Moreover, it is challenging to estimate parameters of models that include baseline characteristics as covariates such as biomarkers. To overcome these issues and promote personalized medicine, we propose a dose-finding method that considers patient background characteristics, including biomarkers, using a model for phase I/II oncology trials. We built a Bayesian neural network with input variables of dose, biomarkers, and interactions between dose and biomarkers and output variables of efficacy outcomes for each patient. We trained the neural network to select the optimal dose based on all background characteristics of a patient. Simulation analysis showed that the probability of selecting the desirable dose was higher using the proposed method than that using the naïve method.
For the modelling of count data, aggregation of the raw data over certain subgroups or predictor configurations is common practice. This is, for instance, the case for count data biomarkers of radiation exposure. Under the Poisson law, count data can be aggregated without loss of information on the Poisson parameter, which remains true if the Poisson assumption is relaxed towards quasi-Poisson. However, in biodosimetry in particular, but also beyond, the question of how the dispersion estimates for quasi-Poisson models behave under data aggregation have received little attention. Indeed, for real data sets featuring unexplained heterogeneities, dispersion estimates can increase strongly after aggregation, an effect which we will demonstrate and quantify explicitly for some scenarios. The increase in dispersion estimates implies an inflation of the parameter standard errors, which, however, by comparison with random effect models, can be shown to serve a corrective purpose. The phenomena are illustrated by γ-H2AX foci data as used for instance in radiation biodosimetry for the calibration of dose-response curves.

