{"title":"Teaching Plan Generation and Evaluation With GPT-4: Unleashing the Potential of LLM in Instructional Design","authors":"Bihao Hu;Longwei Zheng;Jiayi Zhu;Lishan Ding;Yilei Wang;Xiaoqing Gu","doi":"10.1109/TLT.2024.3384765","DOIUrl":null,"url":null,"abstract":"This study explores and analyzes the specific performance of large language models (LLMs) in instructional design, aiming to unveil their potential strengths and possible weaknesses. Recently, the influence of LLMs has gradually increased in multiple fields, yet exploratory research on their application in education remains relatively scarce. In response to this situation, our research, grounded in pedagogical content knowledge theory, initially formulated an instructional design framework based on mathematical problem chains and corresponding prompt instructions. Subsequently, a comprehensive tool for assessing LLM's instructional design capabilities was developed. Utilizing Generative Pretrained Transformer 4, a high school mathematics teaching plan dataset was generated. Finally, the performance of LLMs in instructional design was evaluated. The evaluation results revealed that the teaching plans generated by LLMs excel in setting instructional objectives, identifying teaching priorities, organizing problem chains and teaching activities, articulating subject content, and selecting methods and strategies. Particularly commendable performance was noted in the modules of statistics and functions. However, there is room for improvement in aspects related to mathematical culture and interdisciplinary assessment, as well as in the geometry and algebra modules. Lastly, this study proposes initiatives, such as LLM prompt-based teacher training and the integration of mathematics-focused LLMs. These suggestions aim to advance personalized instructional design and professional development of teachers, offering educators new insights into the in-depth application of LLMs.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"17 ","pages":"1471-1485"},"PeriodicalIF":2.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10490240/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores and analyzes the specific performance of large language models (LLMs) in instructional design, aiming to unveil their potential strengths and possible weaknesses. Recently, the influence of LLMs has gradually increased in multiple fields, yet exploratory research on their application in education remains relatively scarce. In response to this situation, our research, grounded in pedagogical content knowledge theory, initially formulated an instructional design framework based on mathematical problem chains and corresponding prompt instructions. Subsequently, a comprehensive tool for assessing LLM's instructional design capabilities was developed. Utilizing Generative Pretrained Transformer 4, a high school mathematics teaching plan dataset was generated. Finally, the performance of LLMs in instructional design was evaluated. The evaluation results revealed that the teaching plans generated by LLMs excel in setting instructional objectives, identifying teaching priorities, organizing problem chains and teaching activities, articulating subject content, and selecting methods and strategies. Particularly commendable performance was noted in the modules of statistics and functions. However, there is room for improvement in aspects related to mathematical culture and interdisciplinary assessment, as well as in the geometry and algebra modules. Lastly, this study proposes initiatives, such as LLM prompt-based teacher training and the integration of mathematics-focused LLMs. These suggestions aim to advance personalized instructional design and professional development of teachers, offering educators new insights into the in-depth application of LLMs.
期刊介绍:
The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.