{"title":"Data Augmentation for Sparse Multidimensional Learning Performance Data Using Generative AI","authors":"Liang Zhang;Jionghao Lin;John Sabatini;Conrad Borchers;Daniel Weitekamp;Meng Cao;John Hollander;Xiangen Hu;Arthur C. Graesser","doi":"10.1109/TLT.2025.3526582","DOIUrl":null,"url":null,"abstract":"Learning performance data, such as correct or incorrect answers and problem-solving attempts in intelligent tutoring systems (ITSs), facilitate the assessment of knowledge mastery and the delivery of effective instructions. However, these data tend to be highly sparse (80%<inline-formula><tex-math>$\\sim$</tex-math></inline-formula>90% missing observations) in most real-world applications. This data sparsity presents challenges to using learner models to effectively predict learners' future performance and explore new hypotheses about learning. This article proposes a systematic framework for augmenting learning performance data to address data sparsity. First, learning performance data can be represented as a 3-D tensor with dimensions corresponding to learners, questions, and attempts, effectively capturing longitudinal knowledge states during learning. Second, a tensor factorization method is used to impute missing values in sparse tensors of collected learner data, thereby grounding the imputation on knowledge tracing (KT) tasks that predict missing performance values based on real observations. Third, data augmentation using generative artificial intelligence models, including generative adversarial network (GAN), specifically vanilla GANs and generative pretrained transformers (GPTs, specifically GPT-4o), generate data tailored to individual clusters of learning performance. We tested this systemic framework on adult literacy datasets from AutoTutor lessons developed for adult reading comprehension. We found that tensor factorization outperformed baseline KT techniques in tracing and predicting learning performance, demonstrating higher fidelity in data imputation, and the vanilla GAN-based augmentation demonstrated greater overall stability across varying sample sizes, whereas GPT-4o-based augmentation exhibited higher variability, with occasional cases showing closer fidelity to the original data distribution. This framework facilitates the effective augmentation of learning performance data, enabling controlled, cost-effective approach for the evaluation and optimization of ITS instructional designs in both online and offline environments prior to deployment, and supporting advanced educational data mining and learning analytics.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"18 ","pages":"145-164"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10830556/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Learning performance data, such as correct or incorrect answers and problem-solving attempts in intelligent tutoring systems (ITSs), facilitate the assessment of knowledge mastery and the delivery of effective instructions. However, these data tend to be highly sparse (80%$\sim$90% missing observations) in most real-world applications. This data sparsity presents challenges to using learner models to effectively predict learners' future performance and explore new hypotheses about learning. This article proposes a systematic framework for augmenting learning performance data to address data sparsity. First, learning performance data can be represented as a 3-D tensor with dimensions corresponding to learners, questions, and attempts, effectively capturing longitudinal knowledge states during learning. Second, a tensor factorization method is used to impute missing values in sparse tensors of collected learner data, thereby grounding the imputation on knowledge tracing (KT) tasks that predict missing performance values based on real observations. Third, data augmentation using generative artificial intelligence models, including generative adversarial network (GAN), specifically vanilla GANs and generative pretrained transformers (GPTs, specifically GPT-4o), generate data tailored to individual clusters of learning performance. We tested this systemic framework on adult literacy datasets from AutoTutor lessons developed for adult reading comprehension. We found that tensor factorization outperformed baseline KT techniques in tracing and predicting learning performance, demonstrating higher fidelity in data imputation, and the vanilla GAN-based augmentation demonstrated greater overall stability across varying sample sizes, whereas GPT-4o-based augmentation exhibited higher variability, with occasional cases showing closer fidelity to the original data distribution. This framework facilitates the effective augmentation of learning performance data, enabling controlled, cost-effective approach for the evaluation and optimization of ITS instructional designs in both online and offline environments prior to deployment, and supporting advanced educational data mining and learning analytics.
期刊介绍:
The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.