Shadab Anwar Shaikh, M. F. N. Taufique, Kranthi Balusu, Shank S. Kulkarni, Forrest Hale, Jonathan Oleson, Ram Devanathan, Ayoub Soulami
{"title":"Finite Element Analysis and Machine Learning Guided Design of Carbon Fiber Organosheet-Based Battery Enclosures for Crashworthiness","authors":"Shadab Anwar Shaikh, M. F. N. Taufique, Kranthi Balusu, Shank S. Kulkarni, Forrest Hale, Jonathan Oleson, Ram Devanathan, Ayoub Soulami","doi":"10.1007/s10443-024-10218-z","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon fiber composite can be a potential candidate for replacing metal-based battery enclosures of current electric vehicles (E.V.s) owing to its better strength-to-weight ratio and corrosion resistance. However, the strength of carbon fiber-based structures depends on several parameters that should be carefully chosen. In this work, we implemented high throughput finite element analysis (FEA) based thermoforming simulation to virtually manufacture the battery enclosure using different design and processing parameters. Subsequently, we performed virtual crash simulations to mimic a side pole crash to evaluate the crashworthiness of the battery enclosures. This high throughput crash simulation dataset was utilized to build predictive models to understand the crashworthiness of an unknown set. Our machine learning (ML) models showed excellent performance (R<sup>2</sup> > 0.97) in predicting the crashworthiness metrics, i.e., crush load efficiency, absorbed energy, intrusion, and maximum deceleration during a crash. We believe that this FEA-ML work framework will be helpful in down select process parameters for carbon fiber-based component design and can be transferrable to other manufacturing technologies.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 5","pages":"1475 - 1493"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-024-10218-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon fiber composite can be a potential candidate for replacing metal-based battery enclosures of current electric vehicles (E.V.s) owing to its better strength-to-weight ratio and corrosion resistance. However, the strength of carbon fiber-based structures depends on several parameters that should be carefully chosen. In this work, we implemented high throughput finite element analysis (FEA) based thermoforming simulation to virtually manufacture the battery enclosure using different design and processing parameters. Subsequently, we performed virtual crash simulations to mimic a side pole crash to evaluate the crashworthiness of the battery enclosures. This high throughput crash simulation dataset was utilized to build predictive models to understand the crashworthiness of an unknown set. Our machine learning (ML) models showed excellent performance (R2 > 0.97) in predicting the crashworthiness metrics, i.e., crush load efficiency, absorbed energy, intrusion, and maximum deceleration during a crash. We believe that this FEA-ML work framework will be helpful in down select process parameters for carbon fiber-based component design and can be transferrable to other manufacturing technologies.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.