{"title":"A Coupled Elastoplastic-Damage Analytical Model for 3D Resin-Matrix Woven Composites","authors":"Wenyu Zhang, Junhua Guo, Huabing Wen, Weidong Wen, Chun Guo, Yifan Zhang","doi":"10.1007/s10443-024-10265-6","DOIUrl":null,"url":null,"abstract":"<p>Herein, a coupled elastoplastic-damage analytical model is developed to analyze the effect of the plasticity of the resin on the failure behavior of 3D woven composites (3DWC). The proposed model is numerically simulated using different unit-cells of 3DWC and is verified by experimental data. The results show that under warp loading, the plasticity of the resin has a greater effect on component damage, and both the plasticity and the damage show an alternating iterative propagation mode; in contrast, under weft loading, the plasticity of the resin has a lesser effect on component damage, and both show an independent extension pattern. This work provides a guidance for the strength design of 3DWC structures such as aero-engine fan blades, which demonstrates significant engineering implications.</p>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"6 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10443-024-10265-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, a coupled elastoplastic-damage analytical model is developed to analyze the effect of the plasticity of the resin on the failure behavior of 3D woven composites (3DWC). The proposed model is numerically simulated using different unit-cells of 3DWC and is verified by experimental data. The results show that under warp loading, the plasticity of the resin has a greater effect on component damage, and both the plasticity and the damage show an alternating iterative propagation mode; in contrast, under weft loading, the plasticity of the resin has a lesser effect on component damage, and both show an independent extension pattern. This work provides a guidance for the strength design of 3DWC structures such as aero-engine fan blades, which demonstrates significant engineering implications.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.