F. Guo, S. C. Clemens, X. Du, X. Liu, Y. Liu, J. Sun, H. Fan, T. Wang, Y. Sun
{"title":"North Atlantic influence on the glacial amplitude of East Asian millennial-scale monsoon variability","authors":"F. Guo, S. C. Clemens, X. Du, X. Liu, Y. Liu, J. Sun, H. Fan, T. Wang, Y. Sun","doi":"10.1175/jcli-d-23-0200.1","DOIUrl":null,"url":null,"abstract":"Abstract Millennial-scale climate change is thought to be synchronous throughout the northern hemisphere and has been demonstrated to be strongly modulated by longer-term glacial-interglacial and orbital scale processes. However, processes that modulate the magnitude of millennial-scale variability (MMV) at the glacial-interglacial timescale remain unclear. We present multi-proxy evidence showing out-of-phase relationships between the MMV of East Asian and North Atlantic climate proxies at the eccentricity band. During most late Pleistocene glacial intervals, the MMV in North Atlantic SST and East Asian Monsoon proxies show a gradual weakening trend from glacial inceptions into glacial maxima, inversely proportional to that of North Atlantic ice rafted detritus record. The inverse glacial-age trends apply to both summer- and winter-monsoon proxies across the loess, speleothem, and marine archives, indicating fundamental linkages between MMV records of the North Atlantic and East Asia. We infer that intensified glacial-age iceberg discharge is accompanied by weakened Atlantic meridional overturning circulation via changes in freshwater input and water-column stability, leading to reduction in North Atlantic SST and wind anomalies, subsequently propagating dampened millennial-scale variability into the mid-latitude East Asian Monsoon region via the westerlies. Our results indicate that the impact of North Atlantic iceberg discharge and the associated variability in water-column stability at the millennial-scale is a primary influence on hydroclimate instability in East Asia.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"43 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0200.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Millennial-scale climate change is thought to be synchronous throughout the northern hemisphere and has been demonstrated to be strongly modulated by longer-term glacial-interglacial and orbital scale processes. However, processes that modulate the magnitude of millennial-scale variability (MMV) at the glacial-interglacial timescale remain unclear. We present multi-proxy evidence showing out-of-phase relationships between the MMV of East Asian and North Atlantic climate proxies at the eccentricity band. During most late Pleistocene glacial intervals, the MMV in North Atlantic SST and East Asian Monsoon proxies show a gradual weakening trend from glacial inceptions into glacial maxima, inversely proportional to that of North Atlantic ice rafted detritus record. The inverse glacial-age trends apply to both summer- and winter-monsoon proxies across the loess, speleothem, and marine archives, indicating fundamental linkages between MMV records of the North Atlantic and East Asia. We infer that intensified glacial-age iceberg discharge is accompanied by weakened Atlantic meridional overturning circulation via changes in freshwater input and water-column stability, leading to reduction in North Atlantic SST and wind anomalies, subsequently propagating dampened millennial-scale variability into the mid-latitude East Asian Monsoon region via the westerlies. Our results indicate that the impact of North Atlantic iceberg discharge and the associated variability in water-column stability at the millennial-scale is a primary influence on hydroclimate instability in East Asia.
期刊介绍:
The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.