{"title":"A comprehensive study of melt foaming in E-glass batch-to-melt conversion process: Effects of sulfate content and chemistry of raw materials","authors":"Gülin Demirok, Hong Li, Nuri Solak","doi":"10.1111/ijag.16663","DOIUrl":null,"url":null,"abstract":"<p>Control of sulfate-induced melt fining without excessive foaming is one of the critical steps in maintaining the stability of E-glass fiber manufacturing processes. Besides, the efficiency of combustion or energy utilization is directly affected by the extent of the melt-foaming. A fundamental understanding of key factors affecting melt foaming under the simulated oxy-fuel combustion environment will enable commercial E-glass fiber production to optimize both batch chemistry and operation conditions to achieve adequate furnace control. In this study, six types of E-glass batches with the same target glass composition were prepared by using four different CaO sources; calcined limes with different SO<sub>3</sub> contents, limestone, limestone with sodium sulfate, and a mixture of limestone and calcined lime. All batch samples were examined by HTMOS-EGA system (high temperature melting observation system with evolved gas analysis). HTMOS enables monitoring batch-to-melt conversation steps by using a high-resolution camera and EGA detects the evolved reaction gaseous, such as CO, CO<sub>2</sub>, and SO<sub>2</sub> via an Fourier transform infrared (FTIR) gas analyzer. Gases of water vapor, N<sub>2</sub>, and O<sub>2</sub> were introduced accordingly into the fused quartz crucible to simulate similar oxy-fuel atmosphere of the furnace operation. This study aimed to investigate the effects of different SO<sub>3</sub> contents in batches and different raw material chemistries on the foam formation in E-glass melts under the oxy-fuel atmosphere. Different raw materials were characterized by mineralogical analysis, chemical analysis, particle size distribution, chemical oxygen demanding (COD) level, and Brunauer–Emmett–Teller (BET) analysis. Although some of the batches contained the same SO<sub>3</sub> content, different foam formations resulted from the effect of the batch chemistry. Our detailed HTMOS-EGA investigations show that not only SO<sub>3</sub> content in the batch affects foam formation in E-glass melts, but also raw material chemistry and particle size have strong effects on the melt foaming in E-glass batch melting, especially for those of ingredients having hydroxide phases and/or finer particles with higher specific areas.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"15 3","pages":"276-291"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16663","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Control of sulfate-induced melt fining without excessive foaming is one of the critical steps in maintaining the stability of E-glass fiber manufacturing processes. Besides, the efficiency of combustion or energy utilization is directly affected by the extent of the melt-foaming. A fundamental understanding of key factors affecting melt foaming under the simulated oxy-fuel combustion environment will enable commercial E-glass fiber production to optimize both batch chemistry and operation conditions to achieve adequate furnace control. In this study, six types of E-glass batches with the same target glass composition were prepared by using four different CaO sources; calcined limes with different SO3 contents, limestone, limestone with sodium sulfate, and a mixture of limestone and calcined lime. All batch samples were examined by HTMOS-EGA system (high temperature melting observation system with evolved gas analysis). HTMOS enables monitoring batch-to-melt conversation steps by using a high-resolution camera and EGA detects the evolved reaction gaseous, such as CO, CO2, and SO2 via an Fourier transform infrared (FTIR) gas analyzer. Gases of water vapor, N2, and O2 were introduced accordingly into the fused quartz crucible to simulate similar oxy-fuel atmosphere of the furnace operation. This study aimed to investigate the effects of different SO3 contents in batches and different raw material chemistries on the foam formation in E-glass melts under the oxy-fuel atmosphere. Different raw materials were characterized by mineralogical analysis, chemical analysis, particle size distribution, chemical oxygen demanding (COD) level, and Brunauer–Emmett–Teller (BET) analysis. Although some of the batches contained the same SO3 content, different foam formations resulted from the effect of the batch chemistry. Our detailed HTMOS-EGA investigations show that not only SO3 content in the batch affects foam formation in E-glass melts, but also raw material chemistry and particle size have strong effects on the melt foaming in E-glass batch melting, especially for those of ingredients having hydroxide phases and/or finer particles with higher specific areas.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.