{"title":"An electromechanical impedance measurement-based solution for monitoring fresh concrete maturity","authors":"Guobiao Hu, Yaowen Yang, Lipi Mohanty, Soungho Chae, Kohsuke Ishizeki, Lihua Tang","doi":"10.1177/1045389x241241599","DOIUrl":null,"url":null,"abstract":"This paper proposes an electromechanical impedance measurement (EIM)-based solution for monitoring concrete maturity that refers to concrete strength development at the early stage. A smart aggregate (SMA) that consists of a waterproofed piezoelectric patch is developed. The working principle is explained based on the impedance theory of an electromechanically coupled system. A finite element (FE) model of the EIM-SMA unit is established. The stiffness of the applied spring foundation is varied to emulate the concrete hardening process. The simulation results reveal that a peak located between 60 and 70 kHz in the impedance plot could be used as an indication to reflect the stiffness variation of the spring foundation. A 3D-printed mold is designed for rapid production of the EIM-SMA units. In the experiment, two sample EIM-SMA units are used to monitor fresh concrete maturity in the first 6 h after casting. The results of the two sample EIM-SMA units agreed well. The experimental results matched the simulation prediction. Compared to a bar-dropping test that is widely adopted at construction sites, the impedance evolution of an EIM-SMA unit is much smoother and has better monotonicity. In general, the proposed method has been proven to be a reliable solution to monitor the maturity development of concrete.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"10 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x241241599","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an electromechanical impedance measurement (EIM)-based solution for monitoring concrete maturity that refers to concrete strength development at the early stage. A smart aggregate (SMA) that consists of a waterproofed piezoelectric patch is developed. The working principle is explained based on the impedance theory of an electromechanically coupled system. A finite element (FE) model of the EIM-SMA unit is established. The stiffness of the applied spring foundation is varied to emulate the concrete hardening process. The simulation results reveal that a peak located between 60 and 70 kHz in the impedance plot could be used as an indication to reflect the stiffness variation of the spring foundation. A 3D-printed mold is designed for rapid production of the EIM-SMA units. In the experiment, two sample EIM-SMA units are used to monitor fresh concrete maturity in the first 6 h after casting. The results of the two sample EIM-SMA units agreed well. The experimental results matched the simulation prediction. Compared to a bar-dropping test that is widely adopted at construction sites, the impedance evolution of an EIM-SMA unit is much smoother and has better monotonicity. In general, the proposed method has been proven to be a reliable solution to monitor the maturity development of concrete.
期刊介绍:
The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.