首页 > 最新文献

Journal of Intelligent Material Systems and Structures最新文献

英文 中文
Electrical capacitance and mechanical performances of embedded piezo-polymer transducers in polymer-matrix composites under monotonic tensile tests 单调拉伸试验下聚合物基复合材料中嵌入式压电聚合物传感器的电容和机械性能
IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-08 DOI: 10.1177/1045389x241255537
J. Najd, W. Harizi, E. Zappino, Z. Aboura, Erasmo Carrera
In this study, the capacitance variation of piezoelectric polymeric transducers embedded in Polymer Matrix Composites (PMC) under monotonic tensile testing was studied. The aim was to draw out a comparison between the experimental and numerical results obtained via a high-order kinematics 2D model. In parallel, Non-Destructive Testing (NDT) including specimen temperature and Acoustic Emission (AE) signatures were obtained, and a Micro-tensile test was performed directly on the sensor material to further investigate the behaviour of capacitance of P(VDF-TRFE) films directly under tensile tests. The tensile tests were numerical modelled under static electro-mechanically coupled layer-wise 2D models. A sensitivity analysis was performed to determine the effects of the different parameters of the transducer. Under all the presented results, it was found that further investigation regarding the quantitative capacitance variation modelling needs to be carried out, as the presented modelling approach neglects capacitance non-linear behaviour, piezoelectric material discharge and the effects of capacitance measurement.
本研究对聚合物基复合材料(PMC)中嵌入的压电聚合物传感器在单调拉伸测试下的电容变化进行了研究。目的是比较实验结果和通过高阶运动学二维模型获得的数值结果。与此同时,还获得了包括试样温度和声发射(AE)信号在内的无损检测(NDT)结果,并直接在传感器材料上进行了微拉伸试验,以进一步研究 P(VDF-TRFE)薄膜直接在拉伸试验下的电容行为。拉伸试验在静态电子-机械耦合层向二维模型下进行了数值模拟。进行了敏感性分析,以确定传感器不同参数的影响。根据所有展示的结果,发现需要对电容变化的定量建模进行进一步研究,因为展示的建模方法忽略了电容非线性行为、压电材料放电和电容测量的影响。
{"title":"Electrical capacitance and mechanical performances of embedded piezo-polymer transducers in polymer-matrix composites under monotonic tensile tests","authors":"J. Najd, W. Harizi, E. Zappino, Z. Aboura, Erasmo Carrera","doi":"10.1177/1045389x241255537","DOIUrl":"https://doi.org/10.1177/1045389x241255537","url":null,"abstract":"In this study, the capacitance variation of piezoelectric polymeric transducers embedded in Polymer Matrix Composites (PMC) under monotonic tensile testing was studied. The aim was to draw out a comparison between the experimental and numerical results obtained via a high-order kinematics 2D model. In parallel, Non-Destructive Testing (NDT) including specimen temperature and Acoustic Emission (AE) signatures were obtained, and a Micro-tensile test was performed directly on the sensor material to further investigate the behaviour of capacitance of P(VDF-TRFE) films directly under tensile tests. The tensile tests were numerical modelled under static electro-mechanically coupled layer-wise 2D models. A sensitivity analysis was performed to determine the effects of the different parameters of the transducer. Under all the presented results, it was found that further investigation regarding the quantitative capacitance variation modelling needs to be carried out, as the presented modelling approach neglects capacitance non-linear behaviour, piezoelectric material discharge and the effects of capacitance measurement.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid dynamical modeling of shape memory alloy actuators with phase kinetic equations 利用相位动力学方程对形状记忆合金致动器进行混合动力学建模
IF 2.7 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-05 DOI: 10.1177/1045389x241265617
Scott Kennedy, Nicholas Vlajic, Edmon Perkins
Shape memory alloy morphing actuators are a type of composite soft actuator with many attractive properties such as large deformation, small form factor, self-sensing ability, and physical reservoir computing potential. These actuators are composed of active shape memory alloy wires and a passive material to magnify the overall deflection. However, the dynamic modeling of these actuators is difficult due to both shape memory alloy characteristics and the nonlinearity of the passive layer. Here, a hybrid dynamical model is proposed that couples the phase kinetics and thermal modeling for the shape memory alloy with a dynamic Cosserat beam model. This hybrid model is benchmarked against experimental linear and morphing actuators resulting in a root mean squared error of 0.87 mm for the linear actuator and root mean squared error of 1.34 and 1.42 mm for the two morphing actuator configurations evaluated in this work. This model applies continuous phase kinetic equations in a comprehensive hybrid dynamical model to accurately simulate the hysteretic transition of the alloy, which is then coupled to a high deformation beam model. This work can expand the capability and design of novel morphing actuators to achieve specified dynamic characteristics for increased application in robotic fields.
形状记忆合金变形致动器是一种复合软致动器,具有变形量大、外形尺寸小、自感应能力强和物理存储计算潜力大等诸多诱人特性。这些致动器由主动形状记忆合金线和被动材料组成,可放大整体挠度。然而,由于形状记忆合金的特性和被动层的非线性,这些致动器的动态建模非常困难。本文提出了一种混合动力学模型,将形状记忆合金的相动力学和热建模与动态 Cosserat 梁模型结合起来。该混合模型以实验中的线性和变形致动器为基准,结果是线性致动器的均方根误差为 0.87 毫米,而本研究中评估的两种变形致动器配置的均方根误差分别为 1.34 毫米和 1.42 毫米。该模型在一个综合混合动力学模型中应用了连续相动力学方程,以精确模拟合金的滞后转变,然后将其与高变形梁模型耦合。这项工作可以扩展新型变形致动器的能力和设计,使其达到指定的动态特性,从而增加在机器人领域的应用。
{"title":"Hybrid dynamical modeling of shape memory alloy actuators with phase kinetic equations","authors":"Scott Kennedy, Nicholas Vlajic, Edmon Perkins","doi":"10.1177/1045389x241265617","DOIUrl":"https://doi.org/10.1177/1045389x241265617","url":null,"abstract":"Shape memory alloy morphing actuators are a type of composite soft actuator with many attractive properties such as large deformation, small form factor, self-sensing ability, and physical reservoir computing potential. These actuators are composed of active shape memory alloy wires and a passive material to magnify the overall deflection. However, the dynamic modeling of these actuators is difficult due to both shape memory alloy characteristics and the nonlinearity of the passive layer. Here, a hybrid dynamical model is proposed that couples the phase kinetics and thermal modeling for the shape memory alloy with a dynamic Cosserat beam model. This hybrid model is benchmarked against experimental linear and morphing actuators resulting in a root mean squared error of 0.87 mm for the linear actuator and root mean squared error of 1.34 and 1.42 mm for the two morphing actuator configurations evaluated in this work. This model applies continuous phase kinetic equations in a comprehensive hybrid dynamical model to accurately simulate the hysteretic transition of the alloy, which is then coupled to a high deformation beam model. This work can expand the capability and design of novel morphing actuators to achieve specified dynamic characteristics for increased application in robotic fields.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141939798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A coil external mount featuring carefully-tailored magnetorheological grease: Design, characterization, and modeling 采用精心定制的磁流变润滑脂的线圈外部支架:设计、表征和建模
IF 2.7 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-01 DOI: 10.1177/1045389x241261755
Huixing Wang, Kun Qian, Mengwei Du, Jiong Wang
To avoid performance degradation of the magnetorheological (MR) mount due to the traditional inside built-in coil structure and the settling of the MR fluid, a coil external MR mount featuring carefully-tailored MR grease considering sedimentation and zero-field viscosity balance is proposed and its dynamic performances are experimentally investigated. Firstly, a kind of composite lithium-based MR grease is firstly prepared by adjusting the content of Lithium based thickener in the lubricating grease matrix to meet the requirement of relatively low zero-field viscosity under the premise of maintaining stability, and its rheological properties under shear and squeeze mode are studied. Then the coil external MR mount operating in the radial valve-squeeze mixed mode is designed, with an evaluation of the magnetic circuit focusing on its capability to supply a satisfactory magnetic field. The dynamic behavior of coil external MR mount utilizing the carefully-tailored MR grease as the carrier fluid under various magnetic fields has been investigated using oscillatory cycles over a frequency range of 0.5–5 Hz for various displacement amplitudes from 0.5 to 1.5 mm. The results demonstrate that the novel MR grease mount could provide large damping force up to 17.81 kN with a limited stroke. Finally, a Bouc–Wen–Baber–Noori parametric model is proposed to describe the necking hysteretic behavior of the proposed MR grease mount, and a numerical study was conducted to investigate the effects of some key parameters of the model on force-displacement loops. It shows that the model agrees well with the experimental data and it can be used for the dynamics analysis and the real-time control.
为了避免传统内置线圈结构和磁流变液沉降造成的磁流变悬置性能下降,提出了一种考虑沉降和零场粘度平衡的线圈外置磁流变悬置,并对其动态性能进行了实验研究。首先,通过调整润滑脂基体中锂基稠化剂的含量,制备出一种复合锂基磁共振润滑脂,在保持稳定的前提下满足相对较低的零场粘度要求,并研究了其在剪切和挤压模式下的流变特性。然后,设计了在径向阀门-挤压混合模式下工作的线圈外部磁共振支架,并对磁路进行了评估,重点关注其提供满意磁场的能力。在 0.5 至 1.5 毫米的不同位移幅度下,使用频率范围为 0.5 至 5 赫兹的振荡周期,研究了利用精心定制的磁共振润滑脂作为载液的线圈外部磁共振支架在各种磁场下的动态行为。结果表明,新型磁共振润滑脂支架可以在有限的行程内提供高达 17.81 kN 的较大阻尼力。最后,提出了一个 Bouc-Wen-Baber-Noori 参数模型来描述所提出的磁共振润滑脂固定架的颈缩滞后行为,并进行了数值研究,以探讨该模型的一些关键参数对力-位移环的影响。结果表明,该模型与实验数据吻合良好,可用于动力学分析和实时控制。
{"title":"A coil external mount featuring carefully-tailored magnetorheological grease: Design, characterization, and modeling","authors":"Huixing Wang, Kun Qian, Mengwei Du, Jiong Wang","doi":"10.1177/1045389x241261755","DOIUrl":"https://doi.org/10.1177/1045389x241261755","url":null,"abstract":"To avoid performance degradation of the magnetorheological (MR) mount due to the traditional inside built-in coil structure and the settling of the MR fluid, a coil external MR mount featuring carefully-tailored MR grease considering sedimentation and zero-field viscosity balance is proposed and its dynamic performances are experimentally investigated. Firstly, a kind of composite lithium-based MR grease is firstly prepared by adjusting the content of Lithium based thickener in the lubricating grease matrix to meet the requirement of relatively low zero-field viscosity under the premise of maintaining stability, and its rheological properties under shear and squeeze mode are studied. Then the coil external MR mount operating in the radial valve-squeeze mixed mode is designed, with an evaluation of the magnetic circuit focusing on its capability to supply a satisfactory magnetic field. The dynamic behavior of coil external MR mount utilizing the carefully-tailored MR grease as the carrier fluid under various magnetic fields has been investigated using oscillatory cycles over a frequency range of 0.5–5 Hz for various displacement amplitudes from 0.5 to 1.5 mm. The results demonstrate that the novel MR grease mount could provide large damping force up to 17.81 kN with a limited stroke. Finally, a Bouc–Wen–Baber–Noori parametric model is proposed to describe the necking hysteretic behavior of the proposed MR grease mount, and a numerical study was conducted to investigate the effects of some key parameters of the model on force-displacement loops. It shows that the model agrees well with the experimental data and it can be used for the dynamics analysis and the real-time control.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A critical review of transitioning from conventional actuators to artificial muscles in upper-limb rehabilitation devices 上肢康复设备从传统致动器向人工肌肉过渡的重要回顾
IF 2.7 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-31 DOI: 10.1177/1045389x241263878
Salvatore Garofalo, Chiara Morano, Michele Perrelli, Leonardo Pagnotta, Giuseppe Carbone, Domenico Mundo, Luigi Bruno
Brain injuries resulting from spinal cord injuries, strokes, or cerebral palsy are among the traumas most capable of compromising the motor activities of human limbs, hence the necessity for the development of exoskeletons dedicated to the rehabilitation of these organs. This review examines the landscape of actuators essential for the design of cutting-edge upper-limb rehabilitation exoskeletal structures. Beyond merely surveying the current types of actuators available, the paper aims to provide guidelines for selecting actuators that fit optimally with the objectives of upper-limb rehabilitation. The description starts with a brief discussion on the biomechanics of the upper limbs, focusing on the kinematics of pivotal joints (wrist, elbow, shoulder). Subsequently, the existing actuators are systematically reviewed, offering detailed insights into their primary features, operational principles, strengths, weaknesses, and noteworthy applications within the realm of rehabilitation robotics. After the discussion about the actuators, the paper advances by furnishing valuable guidelines for actuators’ selection tailored for upper limb rehabilitation. These guidelines discuss crucial factors, such as the forces required and the natural Range Of Motions (ROMs) of upper limb joints. Finally, the manuscript serves as a valuable resource for researchers, engineers, and practitioners involved in the development of innovative upper-limb rehabilitation devices.
脊髓损伤、中风或脑瘫导致的脑损伤是最有可能影响人类肢体运动活动的创伤之一,因此有必要开发专门用于这些器官康复的外骨骼。本综述探讨了对设计最先进的上肢康复外骨骼结构至关重要的致动器的发展前景。除了调查目前可用的致动器类型外,本文还旨在为选择最适合上肢康复目标的致动器提供指导。文章首先简要讨论了上肢的生物力学,重点是枢轴关节(腕、肘、肩)的运动学。随后,系统回顾了现有的致动器,详细介绍了它们的主要特点、工作原理、优缺点以及在康复机器人领域值得关注的应用。在对致动器进行讨论后,本文进一步提出了为上肢康复量身定制的致动器选择指南。这些指南讨论了上肢关节所需的力和自然运动范围 (ROM) 等关键因素。最后,这篇手稿对于参与开发创新型上肢康复设备的研究人员、工程师和从业人员来说是一份宝贵的资料。
{"title":"A critical review of transitioning from conventional actuators to artificial muscles in upper-limb rehabilitation devices","authors":"Salvatore Garofalo, Chiara Morano, Michele Perrelli, Leonardo Pagnotta, Giuseppe Carbone, Domenico Mundo, Luigi Bruno","doi":"10.1177/1045389x241263878","DOIUrl":"https://doi.org/10.1177/1045389x241263878","url":null,"abstract":"Brain injuries resulting from spinal cord injuries, strokes, or cerebral palsy are among the traumas most capable of compromising the motor activities of human limbs, hence the necessity for the development of exoskeletons dedicated to the rehabilitation of these organs. This review examines the landscape of actuators essential for the design of cutting-edge upper-limb rehabilitation exoskeletal structures. Beyond merely surveying the current types of actuators available, the paper aims to provide guidelines for selecting actuators that fit optimally with the objectives of upper-limb rehabilitation. The description starts with a brief discussion on the biomechanics of the upper limbs, focusing on the kinematics of pivotal joints (wrist, elbow, shoulder). Subsequently, the existing actuators are systematically reviewed, offering detailed insights into their primary features, operational principles, strengths, weaknesses, and noteworthy applications within the realm of rehabilitation robotics. After the discussion about the actuators, the paper advances by furnishing valuable guidelines for actuators’ selection tailored for upper limb rehabilitation. These guidelines discuss crucial factors, such as the forces required and the natural Range Of Motions (ROMs) of upper limb joints. Finally, the manuscript serves as a valuable resource for researchers, engineers, and practitioners involved in the development of innovative upper-limb rehabilitation devices.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic-temperature coupling analysis of a multi-drum dual-coil magnetorheological fluid brake 多滚筒双线圈磁流变液体制动器的磁温耦合分析
IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-28 DOI: 10.1177/1045389x241262396
Jie Wu, Hongyang Xie, Hao Huang, Bingbing Deng
The coupling analysis of the magnetic field and temperature field of a multi-drum dual-coil magnetorheological (MR) brake is presented in this article. Firstly, the structure of the multi-drum dual-coil MR brake is introduced, and a prototype is manufactured. Thermal analysis of the designed brake is carried out, and a torque correction factor is proposed in order to reduce the error between simulation and experimental results. Then, a coupling analysis model of the magnetic field and temperature is established to study the temperature analysis of the brake under steady-state and transient condition. Simulation results show that the allowable slip power in steady state is 23.68 W. The highest temperature occurs in the fluid gap, and the lowest temperature occurs at the shaft. Under the transient state, the brake can work for about 1200 s under 75.08 W slip power. Furthermore, the temperature characteristics of MR brake under the normal braking, emergency braking, and intermittent braking have been studied. An experimental platform is built to study the torque and temperature characteristics. Results show that the simulated temperature is in good agreement with the experiments, indicating that the proposed magnetic-temperature coupling model can accurately simulate the temperature characteristics of the MR brake.
本文介绍了多滚筒双线圈磁流变(MR)制动器的磁场和温度场耦合分析。首先介绍了多滚筒双线圈磁流变制动器的结构,并制作了原型。对所设计的制动器进行了热分析,并提出了扭矩修正系数,以减小模拟和实验结果之间的误差。然后,建立了磁场与温度的耦合分析模型,研究了制动器在稳态和瞬态条件下的温度分析。仿真结果表明,稳定状态下的允许滑差功率为 23.68 W。最高温度出现在流体间隙,最低温度出现在轴。在瞬态条件下,制动器可在 75.08 W 的滑差功率下工作约 1200 秒。此外,还研究了 MR 制动器在正常制动、紧急制动和间歇制动时的温度特性。建立了一个实验平台来研究扭矩和温度特性。结果表明,模拟温度与实验结果十分吻合,表明所提出的磁温耦合模型能够准确模拟磁共振制动器的温度特性。
{"title":"Magnetic-temperature coupling analysis of a multi-drum dual-coil magnetorheological fluid brake","authors":"Jie Wu, Hongyang Xie, Hao Huang, Bingbing Deng","doi":"10.1177/1045389x241262396","DOIUrl":"https://doi.org/10.1177/1045389x241262396","url":null,"abstract":"The coupling analysis of the magnetic field and temperature field of a multi-drum dual-coil magnetorheological (MR) brake is presented in this article. Firstly, the structure of the multi-drum dual-coil MR brake is introduced, and a prototype is manufactured. Thermal analysis of the designed brake is carried out, and a torque correction factor is proposed in order to reduce the error between simulation and experimental results. Then, a coupling analysis model of the magnetic field and temperature is established to study the temperature analysis of the brake under steady-state and transient condition. Simulation results show that the allowable slip power in steady state is 23.68 W. The highest temperature occurs in the fluid gap, and the lowest temperature occurs at the shaft. Under the transient state, the brake can work for about 1200 s under 75.08 W slip power. Furthermore, the temperature characteristics of MR brake under the normal braking, emergency braking, and intermittent braking have been studied. An experimental platform is built to study the torque and temperature characteristics. Results show that the simulated temperature is in good agreement with the experiments, indicating that the proposed magnetic-temperature coupling model can accurately simulate the temperature characteristics of the MR brake.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141796856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electro-mechanical coupling isogeometric analysis of static characteristics in piezoelectric composite materials based on asymptotic homogenization method 基于渐近均质化方法的压电复合材料静态特性的机电耦合等距分析
IF 2.7 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-25 DOI: 10.1177/1045389x241265155
Liming Zhou, He Zhu, Zhong Zhang, Fei Cheng
Accurate mechanical analysis is essential for reliable utilization of piezoelectric composite materials (PCMs). Isogeometric analysis (IGA) of PCMs (termed PCMIGA) based on the asymptotic homogenization method (AHM) is presented in this study and employed to investigate the static mechanical characteristics of PCMs. PCMIGA provides accurate curve representation and shorter preprocessing time, and thus demonstrates both precision and efficiency. First, AHM is utilized to calculate the effective parameters of PCMs at different volume fractions. Next, these effective parameters are combined with the basic equations and boundary conditions of PCMs to derive equations of PCMIGA based on AHM. Finally, the results from several numerical examples are compared with the reference solution to validate the convergence and precision. PCMIGA is proven to be a reliable and accurate method for analyzing the mechanical properties of PCMs.
精确的力学分析对于可靠利用压电复合材料 (PCM) 至关重要。本研究介绍了基于渐近均质化方法 (AHM) 的 PCM 等距分析 (IGA)(称为 PCMIGA),并将其用于研究 PCM 的静态力学特性。PCMIGA 具有精确的曲线表示和较短的预处理时间,因此既精确又高效。首先,利用 AHM 计算不同体积分数下 PCM 的有效参数。然后,将这些有效参数与 PCM 的基本方程和边界条件相结合,得出基于 AHM 的 PCMIGA 方程。最后,将几个数值示例的结果与参考解进行比较,以验证其收敛性和精确性。实践证明,PCMIGA 是分析 PCM 力学性能的一种可靠而精确的方法。
{"title":"Electro-mechanical coupling isogeometric analysis of static characteristics in piezoelectric composite materials based on asymptotic homogenization method","authors":"Liming Zhou, He Zhu, Zhong Zhang, Fei Cheng","doi":"10.1177/1045389x241265155","DOIUrl":"https://doi.org/10.1177/1045389x241265155","url":null,"abstract":"Accurate mechanical analysis is essential for reliable utilization of piezoelectric composite materials (PCMs). Isogeometric analysis (IGA) of PCMs (termed PCMIGA) based on the asymptotic homogenization method (AHM) is presented in this study and employed to investigate the static mechanical characteristics of PCMs. PCMIGA provides accurate curve representation and shorter preprocessing time, and thus demonstrates both precision and efficiency. First, AHM is utilized to calculate the effective parameters of PCMs at different volume fractions. Next, these effective parameters are combined with the basic equations and boundary conditions of PCMs to derive equations of PCMIGA based on AHM. Finally, the results from several numerical examples are compared with the reference solution to validate the convergence and precision. PCMIGA is proven to be a reliable and accurate method for analyzing the mechanical properties of PCMs.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vibration analysis of a partially covered beam with a shear thickening fluid core 带有剪切增厚流体芯的部分覆盖梁的振动分析
IF 2.7 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-25 DOI: 10.1177/1045389x241257719
Weijun Li, Kun Lin, Kaifa Wang, Baolin Wang
The vibration responses of a sandwich beam with partially covered by shear thickening fluid (STF) layer under an impact load are investigated. The nonlinear governing equations of the flexural vibration are derived based on extended Hamilton’s principle and are solved by the finite difference method. The model is then validated and used to develop a complete parametric study of partially covered beams with the STF-filled core to properly design and place the STF patch. It is found that, for the first vibration mode, maximum damping, and the smallest change in the natural frequency are achieved when the coverage length of the partial STF patch exceeds 50% and the center of the patch is positioned at 56.25% from the left edge. For the second vibration mode, the coverage length is 37.5% and the center of the patch is located at 75% from the left edge of the beam. Additionally, it has been observed that maintaining a thickness ratio of 0.75 between the constraining layer and the base beam leads to increased damping, while simultaneously minimizing alterations in the natural frequency of the original beam. The results can be used for the structural design of sandwich beams partially covered by STF.
本文研究了部分覆盖剪切增厚流体(STF)层的夹层梁在冲击载荷作用下的振动响应。根据扩展汉密尔顿原理推导出了挠曲振动的非线性控制方程,并通过有限差分法进行了求解。然后对模型进行了验证,并利用该模型对带有 STF 填充芯的部分覆盖梁进行了完整的参数研究,以正确设计和放置 STF 补丁。研究发现,对于第一种振动模式,当 STF 部分贴片的覆盖长度超过 50%,且贴片中心距离左边缘 56.25% 时,阻尼最大,固有频率变化最小。对于第二振动模式,覆盖长度为 37.5%,贴片中心位于梁左边缘的 75% 处。此外,我们还观察到,将约束层和基梁之间的厚度比保持在 0.75,可以增加阻尼,同时将原梁固有频率的变化降至最低。这些结果可用于部分由 STF 覆盖的夹层梁的结构设计。
{"title":"Vibration analysis of a partially covered beam with a shear thickening fluid core","authors":"Weijun Li, Kun Lin, Kaifa Wang, Baolin Wang","doi":"10.1177/1045389x241257719","DOIUrl":"https://doi.org/10.1177/1045389x241257719","url":null,"abstract":"The vibration responses of a sandwich beam with partially covered by shear thickening fluid (STF) layer under an impact load are investigated. The nonlinear governing equations of the flexural vibration are derived based on extended Hamilton’s principle and are solved by the finite difference method. The model is then validated and used to develop a complete parametric study of partially covered beams with the STF-filled core to properly design and place the STF patch. It is found that, for the first vibration mode, maximum damping, and the smallest change in the natural frequency are achieved when the coverage length of the partial STF patch exceeds 50% and the center of the patch is positioned at 56.25% from the left edge. For the second vibration mode, the coverage length is 37.5% and the center of the patch is located at 75% from the left edge of the beam. Additionally, it has been observed that maintaining a thickness ratio of 0.75 between the constraining layer and the base beam leads to increased damping, while simultaneously minimizing alterations in the natural frequency of the original beam. The results can be used for the structural design of sandwich beams partially covered by STF.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Snap-through of a bistable beam using piezoelectric actuation 利用压电致动器实现双稳态横梁的快速通过
IF 2.7 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-25 DOI: 10.1177/1045389x241259371
Taha Ajnada, Yves Bernard, Laurent Daniel
The paper presents the snap-through of a bistable system using piezoelectric (PZ) actuation. The bistable system consists of a pre-buckled beam fixed between two jaws. The bistability and snap-through of the beam are modelled using two approaches. An analytical model is first implemented. The results are compared to a full finite element simulation. These modelling approaches are used to find the optimal positioning of the PZ patches used for switching. The PZ-actuated snap-through is then modelled using both an analytical equivalent moment model and finite element simulations. An experimental validation setup is developed accordingly. The validation addresses all aspects of the modelling: bistability, snap-through and PZ-actuated snap-through. For the latter two configurations were studied, namely a switching actuated by a single PZ patch or by two patches. A remarkable agreement is found between both modelling approaches and experimental measurements. The proposed analytical modelling tool can be used for rapid pre-design of bistable devices. It is for instance shown that a centimetre-scale steel-device with an initial transverse displacement about 1 mm can be switched with a few-Newton force or alternatively with a few hundreds of Volts using a PZ patch.
本文介绍了使用压电(PZ)驱动的双稳态系统的快速通过。双稳态系统由固定在两个夹钳之间的预扣梁组成。采用两种方法对梁的双稳态性和快速通过进行建模。首先建立一个分析模型。将结果与完整的有限元模拟进行比较。这些建模方法用于找到用于开关的 PZ 贴片的最佳位置。然后,使用等效力矩分析模型和有限元模拟对 PZ 驱动的快穿进行建模。相应地,还开发了一套实验验证装置。验证涉及建模的各个方面:双稳态、快通和 PZ 驱动快通。对于后者,研究了两种配置,即由单个 PZ 贴片或两个贴片驱动的开关。两种建模方法与实验测量结果之间存在明显的一致性。所提出的分析建模工具可用于双稳态器件的快速预设计。例如,研究表明,一个初始横向位移约为 1 毫米的厘米级钢制器件可以通过几牛顿的力或几百伏特的 PZ 贴片进行切换。
{"title":"Snap-through of a bistable beam using piezoelectric actuation","authors":"Taha Ajnada, Yves Bernard, Laurent Daniel","doi":"10.1177/1045389x241259371","DOIUrl":"https://doi.org/10.1177/1045389x241259371","url":null,"abstract":"The paper presents the snap-through of a bistable system using piezoelectric (PZ) actuation. The bistable system consists of a pre-buckled beam fixed between two jaws. The bistability and snap-through of the beam are modelled using two approaches. An analytical model is first implemented. The results are compared to a full finite element simulation. These modelling approaches are used to find the optimal positioning of the PZ patches used for switching. The PZ-actuated snap-through is then modelled using both an analytical equivalent moment model and finite element simulations. An experimental validation setup is developed accordingly. The validation addresses all aspects of the modelling: bistability, snap-through and PZ-actuated snap-through. For the latter two configurations were studied, namely a switching actuated by a single PZ patch or by two patches. A remarkable agreement is found between both modelling approaches and experimental measurements. The proposed analytical modelling tool can be used for rapid pre-design of bistable devices. It is for instance shown that a centimetre-scale steel-device with an initial transverse displacement about 1 mm can be switched with a few-Newton force or alternatively with a few hundreds of Volts using a PZ patch.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep reinforcement learning for tuning active vibration control on a smart piezoelectric beam 用于调整智能压电梁主动振动控制的深度强化学习
IF 2.7 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-25 DOI: 10.1177/1045389x241260976
Maryne Febvre, Jonathan Rodriguez, Simon Chesne, Manuel Collet
Piezoelectric transducers are used within smart structures to create functions such as energy harvesting, wave propagation or vibration control to prevent human discomfort, material fatigue, and instability. The design of the structure becomes more complex with shape optimization and the integration of multiple transducers. Most active vibration control strategies require the tuning of multiple parameters. In addition, the optimization of control methods has to consider experimental uncertainties and the global effect of local actuation. This paper presents the use of a Deep Reinforcement Learning (DRL) algorithm to tune a pseudo lead-lag controller on an experimental smart cantilever beam. The algorithm is trained to maximize a reward function that represents the objective of vibration mitigation. An experimental model is estimated from measurements to accelerate the DRL’s interaction with the environment. The paper compares DRL tuning strategies with [Formula: see text] and [Formula: see text] norm minimization approaches. It demonstrates the efficiency of DRL tuning by comparing the control performance of the different tuning methods on the model and experimental setup.
压电传感器被用于智能结构中,以创建能量收集、波传播或振动控制等功能,从而防止人体不适、材料疲劳和不稳定。随着形状的优化和多个传感器的集成,结构设计变得更加复杂。大多数主动振动控制策略都需要对多个参数进行调整。此外,控制方法的优化还必须考虑实验的不确定性和局部驱动的全局效应。本文介绍了使用深度强化学习(DRL)算法来调整实验智能悬臂梁上的伪前导滞后控制器。对该算法进行了训练,以最大化代表减震目标的奖励函数。通过测量估算实验模型,加速 DRL 与环境的交互。本文将 DRL 调整策略与 [公式:见正文] 和 [公式:见正文] 准则最小化方法进行了比较。通过比较不同调整方法对模型和实验装置的控制性能,证明了 DRL 调整的效率。
{"title":"Deep reinforcement learning for tuning active vibration control on a smart piezoelectric beam","authors":"Maryne Febvre, Jonathan Rodriguez, Simon Chesne, Manuel Collet","doi":"10.1177/1045389x241260976","DOIUrl":"https://doi.org/10.1177/1045389x241260976","url":null,"abstract":"Piezoelectric transducers are used within smart structures to create functions such as energy harvesting, wave propagation or vibration control to prevent human discomfort, material fatigue, and instability. The design of the structure becomes more complex with shape optimization and the integration of multiple transducers. Most active vibration control strategies require the tuning of multiple parameters. In addition, the optimization of control methods has to consider experimental uncertainties and the global effect of local actuation. This paper presents the use of a Deep Reinforcement Learning (DRL) algorithm to tune a pseudo lead-lag controller on an experimental smart cantilever beam. The algorithm is trained to maximize a reward function that represents the objective of vibration mitigation. An experimental model is estimated from measurements to accelerate the DRL’s interaction with the environment. The paper compares DRL tuning strategies with [Formula: see text] and [Formula: see text] norm minimization approaches. It demonstrates the efficiency of DRL tuning by comparing the control performance of the different tuning methods on the model and experimental setup.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and testing of a high power piezo pump for hydraulic actuation 设计和测试用于液压驱动的大功率压电泵
IF 2.7 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-07-25 DOI: 10.1177/1045389x241256830
Nathan Sell, Tom Feehally, Andrew Plummer, Peter Wilson, Jonathan du Bois, Nigel Johnston, Jens Roesner, Andrea De Bartolomeis, Tom Love
Traditional valve-controlled hydraulic cylinders are usually very inefficient due to power loss through the control valve. An efficient alternative architecture is to distribute power electrically rather than hydraulically to a group of cylinders and drive each cylinder via individual servomotor-driven pumps. This arrangement is called electrohydrostatic actuation. Such actuators are currently available for power ratings of several hundred watts or greater, but not in the sub-100 W range. This paper details the design, simulation and testing of a piezopump which is intended to address this gap. The motivation is for aerospace applications, and in particular accessory actuators used in the landing gear system. The 10–100 W range is a high-power output for a piezopump, and to achieve this a novel design using disc-style reed valves was developed to allow pumping frequencies above 1 kHz. These high frequencies necessitated the development of custom power electronics capable of delivering 950 V peak-peak sine wave excitation to a largely capacitive load. Experimental results show that the piezopump is capable of delivering over 30 W of hydraulic power, and at no-load can deliver up to 2 L/min of flow at 1250 Hz. Future development includes a transition to multi-cylinder pumps, and improved reed-valve modelling to improve the accuracy of simulated performance.
传统的阀控液压缸通常效率很低,因为控制阀会造成功率损失。一种高效的替代结构是通过电力而不是液压将动力分配到一组油缸,并通过单独的伺服电机驱动泵来驱动每个油缸。这种安排称为静电流体传动。目前,这种执行器的额定功率为几百瓦或更大,但还没有低于 100 瓦的执行器。本文详细介绍了压电泵的设计、模拟和测试,旨在弥补这一不足。其动机是用于航空航天应用,特别是起落架系统中使用的附件致动器。10-100 W 的功率范围对于压电泵来说是很高的输出功率,为了实现这一目标,我们开发了一种使用圆盘式簧片阀的新颖设计,允许泵送频率超过 1 kHz。由于频率较高,因此有必要开发定制的功率电子器件,以便能够向大电容负载提供峰值为 950 V 的正弦波激励。实验结果表明,压泵能够提供 30 W 以上的液压功率,空载时在 1250 Hz 的频率下可提供高达 2 L/min 的流量。未来的发展包括过渡到多缸泵,以及改进簧片阀建模,以提高模拟性能的准确性。
{"title":"Design and testing of a high power piezo pump for hydraulic actuation","authors":"Nathan Sell, Tom Feehally, Andrew Plummer, Peter Wilson, Jonathan du Bois, Nigel Johnston, Jens Roesner, Andrea De Bartolomeis, Tom Love","doi":"10.1177/1045389x241256830","DOIUrl":"https://doi.org/10.1177/1045389x241256830","url":null,"abstract":"Traditional valve-controlled hydraulic cylinders are usually very inefficient due to power loss through the control valve. An efficient alternative architecture is to distribute power electrically rather than hydraulically to a group of cylinders and drive each cylinder via individual servomotor-driven pumps. This arrangement is called electrohydrostatic actuation. Such actuators are currently available for power ratings of several hundred watts or greater, but not in the sub-100 W range. This paper details the design, simulation and testing of a piezopump which is intended to address this gap. The motivation is for aerospace applications, and in particular accessory actuators used in the landing gear system. The 10–100 W range is a high-power output for a piezopump, and to achieve this a novel design using disc-style reed valves was developed to allow pumping frequencies above 1 kHz. These high frequencies necessitated the development of custom power electronics capable of delivering 950 V peak-peak sine wave excitation to a largely capacitive load. Experimental results show that the piezopump is capable of delivering over 30 W of hydraulic power, and at no-load can deliver up to 2 L/min of flow at 1250 Hz. Future development includes a transition to multi-cylinder pumps, and improved reed-valve modelling to improve the accuracy of simulated performance.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Intelligent Material Systems and Structures
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1