A modified parametric model to predict visco-elastic properties of magneto-rheological elastomers at non-LVE region

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Intelligent Material Systems and Structures Pub Date : 2024-09-14 DOI:10.1177/1045389x241272994
Dipal Patel, Ramesh V Upadhyay, Saiful Amri Mazlan, SB Choi
{"title":"A modified parametric model to predict visco-elastic properties of magneto-rheological elastomers at non-LVE region","authors":"Dipal Patel, Ramesh V Upadhyay, Saiful Amri Mazlan, SB Choi","doi":"10.1177/1045389x241272994","DOIUrl":null,"url":null,"abstract":"The magneto-rheological elastomer is mostly used in vibration isolation, for which higher modulus and lower Payne effect factors are crucial parameters. Strain amplitudes and frequencies influence many applications under dynamic modes. In this work, the dynamic viscoelastic properties of MRE, fabricated using electrolyte iron (EI) particles, were measured for varying strain amplitude, magnetic field and frequency. A fractional Kelvin-Voigt (KV) model is used in a frequency region from 0.01 to 40 Hz to predict the rheological behaviour. However, the available models failed to explain the observed behaviour at low frequencies and high magnetic fields and increasing strain amplitude (i.e. in the non-viscoelastic region). Therefore, a new modified KV model is proposed in this work to incorporate the drawbacks and hence can validate for varying frequency, magnetic field and strain amplitudes. The added terms can also be used in the fractional derivative Maxwell model to explain the effect of strain amplitude and magnetic field at various frequencies. The proposed model significantly improves the quality of experimental prediction in the low-frequency range, corresponding to a slow dissipative process at different strain amplitudes.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x241272994","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The magneto-rheological elastomer is mostly used in vibration isolation, for which higher modulus and lower Payne effect factors are crucial parameters. Strain amplitudes and frequencies influence many applications under dynamic modes. In this work, the dynamic viscoelastic properties of MRE, fabricated using electrolyte iron (EI) particles, were measured for varying strain amplitude, magnetic field and frequency. A fractional Kelvin-Voigt (KV) model is used in a frequency region from 0.01 to 40 Hz to predict the rheological behaviour. However, the available models failed to explain the observed behaviour at low frequencies and high magnetic fields and increasing strain amplitude (i.e. in the non-viscoelastic region). Therefore, a new modified KV model is proposed in this work to incorporate the drawbacks and hence can validate for varying frequency, magnetic field and strain amplitudes. The added terms can also be used in the fractional derivative Maxwell model to explain the effect of strain amplitude and magnetic field at various frequencies. The proposed model significantly improves the quality of experimental prediction in the low-frequency range, corresponding to a slow dissipative process at different strain amplitudes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测磁流变弹性体在非 LVE 区域粘弹特性的修正参数模型
磁流变弹性体主要用于隔振,其较高的模量和较低的佩恩效应系数是关键参数。在动态模式下,应变幅度和频率会影响许多应用。在这项工作中,测量了使用电解质铁(EI)颗粒制造的磁弹性体在不同应变振幅、磁场和频率下的动态粘弹特性。在 0.01 至 40 Hz 的频率范围内,使用分数开尔文-伏依格特(KV)模型来预测流变行为。然而,现有模型无法解释在低频、高磁场和应变振幅增大时(即在非粘弹性区域)观察到的行为。因此,本研究提出了一个新的修正 KV 模型,将这些缺点纳入其中,从而可以对不同频率、磁场和应变幅值进行验证。新增项还可用于分数导数麦克斯韦模型,以解释不同频率下应变幅值和磁场的影响。所提出的模型大大提高了低频范围内的实验预测质量,这与不同应变幅值下的缓慢耗散过程相对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
期刊最新文献
A modified parametric model to predict visco-elastic properties of magneto-rheological elastomers at non-LVE region Simultaneous position and force control of a SMA-actuated continuum robotic module A facile method to fabricate auxetic polymer foams A low-frequency multidirectional piezoelectric vibration energy harvester using a universal joint structure Development of a fail-safe magnetorheological fluid device using electro and permanent magnets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1