Inhibition of GLUD1 mediated by LASP1 and SYVN1 contributes to hepatitis B virus X protein-induced hepatocarcinogenesis

IF 5.3 2区 生物学 Q2 CELL BIOLOGY Journal of Molecular Cell Biology Pub Date : 2024-04-08 DOI:10.1093/jmcb/mjae014
Hong-Juan You, Qi Li, Li-Hong Ma, Xing Wang, Huan-Yang Zhang, Yu-Xin Wang, En-Si Bao, Yu-Jie Zhong, De-Long Kong, Xiang-Ye Liu, Fan-Yun Kong, Kui-Yang Zheng, Ren-Xian Tang
{"title":"Inhibition of GLUD1 mediated by LASP1 and SYVN1 contributes to hepatitis B virus X protein-induced hepatocarcinogenesis","authors":"Hong-Juan You, Qi Li, Li-Hong Ma, Xing Wang, Huan-Yang Zhang, Yu-Xin Wang, En-Si Bao, Yu-Jie Zhong, De-Long Kong, Xiang-Ye Liu, Fan-Yun Kong, Kui-Yang Zheng, Ren-Xian Tang","doi":"10.1093/jmcb/mjae014","DOIUrl":null,"url":null,"abstract":"Glutamate dehydrogenase 1 (GLUD1) is implicated in oncogenesis. However, little is known about the relationship between GLUD1 and hepatocellular carcinoma (HCC). In the present study, we demonstrated that the expression levels of GLUD1 significantly decreased in tumors, which was relevant to the poor prognosis of HCC. Functionally, GLUD1 silencing enhanced the growth and migration of HCC cells. Mechanistically, the upregulation of interleukin-32 through AKT activation contributes to GLUD1 silencing-facilitated hepatocarcinogenesis. The interaction between GLUD1 and AKT, as well as α-ketoglutarate regulated by GLUD1, can suppress AKT activation. In addition, LIM and SH3 protein 1 (LASP1) interacts with GLUD1 and induces GLUD1 degradation via the ubiquitin–proteasome pathway, which relies on the E3 ubiquitin ligase synoviolin (SYVN1), whose interaction with GLUD1 is enhanced by LASP1. In hepatitis B virus (HBV)-related HCC, the HBV X protein (HBX) can suppress GLUD1 with the participation of LASP1 and SYVN1. Collectively, our data suggest that GLUD1 silencing is significantly associated with HCC development, and LASP1 and SYVN1 mediate the inhibition of GLUD1 in HCC, especially in HBV-related tumors.","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":"84 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjae014","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glutamate dehydrogenase 1 (GLUD1) is implicated in oncogenesis. However, little is known about the relationship between GLUD1 and hepatocellular carcinoma (HCC). In the present study, we demonstrated that the expression levels of GLUD1 significantly decreased in tumors, which was relevant to the poor prognosis of HCC. Functionally, GLUD1 silencing enhanced the growth and migration of HCC cells. Mechanistically, the upregulation of interleukin-32 through AKT activation contributes to GLUD1 silencing-facilitated hepatocarcinogenesis. The interaction between GLUD1 and AKT, as well as α-ketoglutarate regulated by GLUD1, can suppress AKT activation. In addition, LIM and SH3 protein 1 (LASP1) interacts with GLUD1 and induces GLUD1 degradation via the ubiquitin–proteasome pathway, which relies on the E3 ubiquitin ligase synoviolin (SYVN1), whose interaction with GLUD1 is enhanced by LASP1. In hepatitis B virus (HBV)-related HCC, the HBV X protein (HBX) can suppress GLUD1 with the participation of LASP1 and SYVN1. Collectively, our data suggest that GLUD1 silencing is significantly associated with HCC development, and LASP1 and SYVN1 mediate the inhibition of GLUD1 in HCC, especially in HBV-related tumors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LASP1 和 SYVN1 介导的 GLUD1 抑制作用有助于乙型肝炎病毒 X 蛋白诱导的肝癌发生
谷氨酸脱氢酶 1 (GLUD1) 与肿瘤发生有关。然而,人们对 GLUD1 与肝细胞癌(HCC)之间的关系知之甚少。在本研究中,我们发现 GLUD1 在肿瘤中的表达水平显著下降,这与 HCC 的不良预后有关。在功能上,沉默 GLUD1 能增强 HCC 细胞的生长和迁移。从机理上讲,白细胞介素-32通过AKT激活上调导致了GLUD1沉默促进肝癌的发生。GLUD1与AKT之间的相互作用以及GLUD1调控的α-酮戊二酸可抑制AKT的活化。此外,LIM 和 SH3 蛋白 1(LASP1)与 GLUD1 相互作用,并通过泛素-蛋白酶体途径诱导 GLUD1 降解,而泛素-蛋白酶体途径依赖于 E3 泛素连接酶 synoviolin(SYVN1),LASP1 可增强 SYVN1 与 GLUD1 的相互作用。在乙型肝炎病毒(HBV)相关的 HCC 中,HBV X 蛋白(HBX)可在 LASP1 和 SYVN1 的参与下抑制 GLUD1。总之,我们的数据表明,GLUD1 的沉默与 HCC 的发展密切相关,LASP1 和 SYVN1 在 HCC 中介导了对 GLUD1 的抑制,尤其是在 HBV 相关肿瘤中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
1.80%
发文量
1383
期刊介绍: The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome. JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.
期刊最新文献
Blockade of TNF-α/TNFR2 signalling suppresses colorectal cancer and enhances the efficacy of anti-PD1 immunotherapy by decreasing CCR8+T regulatory cells. Unleashing the power of antigen-presenting neutrophils. Molecular insights into AGS3's role in spindle orientation: a biochemical perspective. Increased serum β-hydroxybutyrate/acetoacetate ratio and aggravated histological liver inflammation in females with metabolic dysfunction-associated steatotic liver disease and polycystic ovary syndrome. Structure-specific nucleases in genome dynamics and strategies for targeting cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1