{"title":"Effects of wind speed, underlying surface, and seed morphological traits on the secondary seed dispersal in the Tengger Desert, China","authors":"Wenjie Qu, Wenzhi Zhao, Xinguo Yang, Lei Wang, Xue Zhang, Jianjun Qu","doi":"10.1007/s40333-024-0057-4","DOIUrl":null,"url":null,"abstract":"<p>The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role. Based on field wind tunnel experiments using 11 common plant species on the southeastern edge of the Tengger Desert, China, we studied the secondary seed dispersal in the fixed and semi-fixed sand dunes as well as in the mobile dunes in order to understand the limitations of vegetation regeneration and the maintenance of its stability. Our results indicated that there were significant variations among the selected 11 plant species in the threshold of wind speed (TWS). The TWS of <i>Caragana korshinskii</i> was the highest among the 11 plant species, whereas that of <i>Echinops gmelinii</i> was the lowest. Seed morphological traits and underlying surface could generally explain the TWS. During the secondary seed dispersal processes, the proportions of seeds that did not disperse (no dispersal) and only dispersed over short distance (short-distance dispersal within the wind tunnel test section) were significantly higher than those of seeds that were buried (including lost seeds) and dispersed over long distance (long-distance dispersal beyond the wind tunnel test section). Compared with other habitats, the mobile dunes were the most difficult places for secondary seed dispersal. Buried seeds were the easiest to be found in the semi-fixed sand dunes, whereas fixed sand dunes were the best sites for seeds that dispersed over long distance. The results of linear mixed models showed that after controlling the dispersal distance, smaller and rounder seeds dispersed farther. Shape index and wind speed were the two significant influencing factors on the burial of seeds. The explanatory power of wind speed, underlying surface, and seed morphological traits on the seeds that did not disperse and dispersed over short distance was far greater than that on the seeds that were buried and dispersed over long distance, implying that the processes and mechanisms of burial and long-distance dispersal are more complex. In summary, most seeds in the study area either did not move, were buried, or dispersed over short distance, promoting local vegetation regeneration.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"4 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0057-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role. Based on field wind tunnel experiments using 11 common plant species on the southeastern edge of the Tengger Desert, China, we studied the secondary seed dispersal in the fixed and semi-fixed sand dunes as well as in the mobile dunes in order to understand the limitations of vegetation regeneration and the maintenance of its stability. Our results indicated that there were significant variations among the selected 11 plant species in the threshold of wind speed (TWS). The TWS of Caragana korshinskii was the highest among the 11 plant species, whereas that of Echinops gmelinii was the lowest. Seed morphological traits and underlying surface could generally explain the TWS. During the secondary seed dispersal processes, the proportions of seeds that did not disperse (no dispersal) and only dispersed over short distance (short-distance dispersal within the wind tunnel test section) were significantly higher than those of seeds that were buried (including lost seeds) and dispersed over long distance (long-distance dispersal beyond the wind tunnel test section). Compared with other habitats, the mobile dunes were the most difficult places for secondary seed dispersal. Buried seeds were the easiest to be found in the semi-fixed sand dunes, whereas fixed sand dunes were the best sites for seeds that dispersed over long distance. The results of linear mixed models showed that after controlling the dispersal distance, smaller and rounder seeds dispersed farther. Shape index and wind speed were the two significant influencing factors on the burial of seeds. The explanatory power of wind speed, underlying surface, and seed morphological traits on the seeds that did not disperse and dispersed over short distance was far greater than that on the seeds that were buried and dispersed over long distance, implying that the processes and mechanisms of burial and long-distance dispersal are more complex. In summary, most seeds in the study area either did not move, were buried, or dispersed over short distance, promoting local vegetation regeneration.
期刊介绍:
The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large.
The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.