{"title":"Consumption of dietary fiber and APOA5 genetic variants in metabolic syndrome: baseline data from the Korean Medicine Daejeon Citizen Cohort Study","authors":"Jimi Kim, Younghwa Baek, Siwoo Lee","doi":"10.1186/s12986-024-00793-0","DOIUrl":null,"url":null,"abstract":"Consumption of dietary fiber has been suggested as an important aspect of a healthy diet to reduce the risk of metabolic syndrome (MetS), including cardiovascular disease. The role of fiber intake in MetS might differ by individual genetic susceptibility. APOA5 encodes a regulator of plasma triglyceride levels, which impacts the related mechanisms of MetS. This study investigated the association between dietary fiber and the risk of MetS, assessing their associations according to APOA5 genetic variants. A total of 1985 participants aged 30–55 years were included from a cross-sectional study based on the Korean Medicine Daejeon Citizen Cohort study at baseline (2017–2019). Dietary fiber intake was measured using a semiquantitative food frequency questionnaire. The APOA5 polymorphisms (rs2266788 A > G, rs662799 A > G, and rs651821 T > C) were genotyped using the Asia Precision Medicine Research Array. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs). A higher consumption of dietary fiber was associated with a lower prevalence of MetS (P = 0.025). Among the components of MetS, an inverse association with dietary fiber was observed in increased waist circumference (OR, 95% CI = 0.60, 0.41–0.88, P for trend = 0.009) and elevated triglycerides (OR, 95% CI = 0.69, 0.50–0.96, P for trend = 0.012). Regarding the interaction with APOA5 genetic variants, a stronger association with dietary fiber intake was shown in G allele carriers of rs662799 than in A/A carriers (OR, 95% CI = 2.34, 1.59–3.44, P for interaction = 0.024) and in C allele carriers of rs651821 than in T/T carriers (OR, 95% CI = 2.35, 1.59–3.46, P for interaction = 0.027). The findings of this study suggest that the benefits of dietary fiber on the risk of MetS could be modified by genetic variants of the APOA5 gene, providing a more effective strategy for preventing MetS.","PeriodicalId":19196,"journal":{"name":"Nutrition & Metabolism","volume":"100 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12986-024-00793-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Consumption of dietary fiber has been suggested as an important aspect of a healthy diet to reduce the risk of metabolic syndrome (MetS), including cardiovascular disease. The role of fiber intake in MetS might differ by individual genetic susceptibility. APOA5 encodes a regulator of plasma triglyceride levels, which impacts the related mechanisms of MetS. This study investigated the association between dietary fiber and the risk of MetS, assessing their associations according to APOA5 genetic variants. A total of 1985 participants aged 30–55 years were included from a cross-sectional study based on the Korean Medicine Daejeon Citizen Cohort study at baseline (2017–2019). Dietary fiber intake was measured using a semiquantitative food frequency questionnaire. The APOA5 polymorphisms (rs2266788 A > G, rs662799 A > G, and rs651821 T > C) were genotyped using the Asia Precision Medicine Research Array. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs). A higher consumption of dietary fiber was associated with a lower prevalence of MetS (P = 0.025). Among the components of MetS, an inverse association with dietary fiber was observed in increased waist circumference (OR, 95% CI = 0.60, 0.41–0.88, P for trend = 0.009) and elevated triglycerides (OR, 95% CI = 0.69, 0.50–0.96, P for trend = 0.012). Regarding the interaction with APOA5 genetic variants, a stronger association with dietary fiber intake was shown in G allele carriers of rs662799 than in A/A carriers (OR, 95% CI = 2.34, 1.59–3.44, P for interaction = 0.024) and in C allele carriers of rs651821 than in T/T carriers (OR, 95% CI = 2.35, 1.59–3.46, P for interaction = 0.027). The findings of this study suggest that the benefits of dietary fiber on the risk of MetS could be modified by genetic variants of the APOA5 gene, providing a more effective strategy for preventing MetS.
期刊介绍:
Nutrition & Metabolism publishes studies with a clear focus on nutrition and metabolism with applications ranging from nutrition needs, exercise physiology, clinical and population studies, as well as the underlying mechanisms in these aspects.
The areas of interest for Nutrition & Metabolism encompass studies in molecular nutrition in the context of obesity, diabetes, lipedemias, metabolic syndrome and exercise physiology. Manuscripts related to molecular, cellular and human metabolism, nutrient sensing and nutrient–gene interactions are also in interest, as are submissions that have employed new and innovative strategies like metabolomics/lipidomics or other omic-based biomarkers to predict nutritional status and metabolic diseases.
Key areas we wish to encourage submissions from include:
-how diet and specific nutrients interact with genes, proteins or metabolites to influence metabolic phenotypes and disease outcomes;
-the role of epigenetic factors and the microbiome in the pathogenesis of metabolic diseases and their influence on metabolic responses to diet and food components;
-how diet and other environmental factors affect epigenetics and microbiota; the extent to which genetic and nongenetic factors modify personal metabolic responses to diet and food compositions and the mechanisms involved;
-how specific biologic networks and nutrient sensing mechanisms attribute to metabolic variability.