The polyphenol metabolite urolithin A suppresses myostatin expression and augments glucose uptake in human skeletal muscle cells.

IF 3.9 2区 医学 Q2 NUTRITION & DIETETICS Nutrition & Metabolism Pub Date : 2025-02-17 DOI:10.1186/s12986-025-00909-0
Andrew Wilhelmsen, Leonidas G Karagounis, Andrew J Bennett, Davide D'Amico, Andréane M Fouassier, Simon W Jones, Kostas Tsintzas
{"title":"The polyphenol metabolite urolithin A suppresses myostatin expression and augments glucose uptake in human skeletal muscle cells.","authors":"Andrew Wilhelmsen, Leonidas G Karagounis, Andrew J Bennett, Davide D'Amico, Andréane M Fouassier, Simon W Jones, Kostas Tsintzas","doi":"10.1186/s12986-025-00909-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Polyphenolic plant extracts have demonstrated anti-inflammatory and anti-catabolic effects in vitro, however their meaningful translation into humans remains elusive. Urolithin A (UA), a gut-derived metabolite of ellagitannins, has shown promise for improving muscle function and metabolic health in rodent models. This study aimed to explore the impact of UA on insulin and anabolic sensitivity in human skeletal muscle cells.</p><p><strong>Methods: </strong>Primary human myogenic cultures were derived from skeletal muscle biopsies of eight healthy adults. After differentiation, myotubes were treated with 0.002, 1 and 50 µM UA or vehicle for 24 h. Cell viability was assessed using a resazurin assay. Basal and insulin-stimulated glucose uptake was measured using tritiated deoxy-D-glucose, whilst amino acid-stimulated protein synthesis was estimated using the surface sensing of translation (SuNSET) technique. Expression of myostatin and glucose transporters was quantified via real-time PCR.</p><p><strong>Results: </strong>UA treatment at ≤ 50 µM did not compromise cell viability. Treatment with 50 µM UA enhanced both basal- and insulin-stimulated glucose uptake by 21% (P < 0.05) and 24% (P < 0.01), respectively, compared to vehicle and was accompanied by a 1.8-fold upregulation of GLUT4 expression (P < 0.01). 50 µM UA reduced myostatin (MSTN) expression by 14% (P < 0.01) but did not alter amino acid-stimulated global cell protein synthesis.</p><p><strong>Conclusion: </strong>This study provides evidence of UA's metabolic benefits in primary human myotubes, notably improving basal- and insulin-stimulated glucose uptake and supressing MSTN expression. These findings suggest UA could be an effective nutraceutical for mitigating insulin resistance and warrants further investigation.</p>","PeriodicalId":19196,"journal":{"name":"Nutrition & Metabolism","volume":"22 1","pages":"12"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12986-025-00909-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Polyphenolic plant extracts have demonstrated anti-inflammatory and anti-catabolic effects in vitro, however their meaningful translation into humans remains elusive. Urolithin A (UA), a gut-derived metabolite of ellagitannins, has shown promise for improving muscle function and metabolic health in rodent models. This study aimed to explore the impact of UA on insulin and anabolic sensitivity in human skeletal muscle cells.

Methods: Primary human myogenic cultures were derived from skeletal muscle biopsies of eight healthy adults. After differentiation, myotubes were treated with 0.002, 1 and 50 µM UA or vehicle for 24 h. Cell viability was assessed using a resazurin assay. Basal and insulin-stimulated glucose uptake was measured using tritiated deoxy-D-glucose, whilst amino acid-stimulated protein synthesis was estimated using the surface sensing of translation (SuNSET) technique. Expression of myostatin and glucose transporters was quantified via real-time PCR.

Results: UA treatment at ≤ 50 µM did not compromise cell viability. Treatment with 50 µM UA enhanced both basal- and insulin-stimulated glucose uptake by 21% (P < 0.05) and 24% (P < 0.01), respectively, compared to vehicle and was accompanied by a 1.8-fold upregulation of GLUT4 expression (P < 0.01). 50 µM UA reduced myostatin (MSTN) expression by 14% (P < 0.01) but did not alter amino acid-stimulated global cell protein synthesis.

Conclusion: This study provides evidence of UA's metabolic benefits in primary human myotubes, notably improving basal- and insulin-stimulated glucose uptake and supressing MSTN expression. These findings suggest UA could be an effective nutraceutical for mitigating insulin resistance and warrants further investigation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nutrition & Metabolism
Nutrition & Metabolism 医学-营养学
CiteScore
8.40
自引率
0.00%
发文量
78
审稿时长
4-8 weeks
期刊介绍: Nutrition & Metabolism publishes studies with a clear focus on nutrition and metabolism with applications ranging from nutrition needs, exercise physiology, clinical and population studies, as well as the underlying mechanisms in these aspects. The areas of interest for Nutrition & Metabolism encompass studies in molecular nutrition in the context of obesity, diabetes, lipedemias, metabolic syndrome and exercise physiology. Manuscripts related to molecular, cellular and human metabolism, nutrient sensing and nutrient–gene interactions are also in interest, as are submissions that have employed new and innovative strategies like metabolomics/lipidomics or other omic-based biomarkers to predict nutritional status and metabolic diseases. Key areas we wish to encourage submissions from include: -how diet and specific nutrients interact with genes, proteins or metabolites to influence metabolic phenotypes and disease outcomes; -the role of epigenetic factors and the microbiome in the pathogenesis of metabolic diseases and their influence on metabolic responses to diet and food components; -how diet and other environmental factors affect epigenetics and microbiota; the extent to which genetic and nongenetic factors modify personal metabolic responses to diet and food compositions and the mechanisms involved; -how specific biologic networks and nutrient sensing mechanisms attribute to metabolic variability.
期刊最新文献
Effect of time-restricted feeding and caloric restriction in metabolic associated fatty liver disease in male rats. Remnant cholesterol, a potential risk factor of metabolic dysfunction-associated fatty liver disease. The polyphenol metabolite urolithin A suppresses myostatin expression and augments glucose uptake in human skeletal muscle cells. Anti-inflammatory diets might mitigate the association between sedentary behaviors and the risk of all-cause deaths. Overlap prevalence and interaction effect of cardiometabolic risk factors for metabolic dysfunction-associated steatotic liver disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1