{"title":"Change in lumen pore structure of halloysite nanotube membrane coating under varying pressure, time and temperature","authors":"Sarbasree Dutta, Nandini Das","doi":"10.1007/s10934-024-01585-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, the suitability of utilization of porous lumen structure of Halloysite (Hal) nanoclay has been studied elaborately. To utilize the lumen structure for membrane development, the effect of temperature, pressure and time on the porous lumen feature and subsequent use of the clay in pristine form as a membrane coating material for separation purposes at specified temperatures shows the importance of this study. The present study investigates structural changes in Halloysite nanoclay's inherent porous tubular morphology. Membranes are prepared by coating clay-alumina porous support tube with Halloysite sol under pressure and temperature of 100 and 160 °C for 24, 48 and 64 h, respectively. XRD and FTIR reveal that the tubular structure remains intact under experimental conditions. In contrast, the morphology of pristine Hal powder treated at the specified temperature and under in situ developed autogenous pressure shows a significant textural change in the nanotubular morphology observed from FESEM. At 100 °C, lumen porosity remains intact, but at 160 °C, under higher pressure, lumen mouth sealing, conjoining and coalescence of the halloysite nanotubes (HNT) result. In addition, for both temperatures under existing operating pressure, the effect of 24 h time duration on morphology is less. For practical viability, a preliminary study for dye removal is carried out with H1 membrane coating, which shows promising %rejection values. This study on powders and membrane coatings might thus help to assign new application fields, such as membrane-based separation utilizing the porous nature of HNT by controlling different process parameters.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 4","pages":"1207 - 1227"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01585-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, the suitability of utilization of porous lumen structure of Halloysite (Hal) nanoclay has been studied elaborately. To utilize the lumen structure for membrane development, the effect of temperature, pressure and time on the porous lumen feature and subsequent use of the clay in pristine form as a membrane coating material for separation purposes at specified temperatures shows the importance of this study. The present study investigates structural changes in Halloysite nanoclay's inherent porous tubular morphology. Membranes are prepared by coating clay-alumina porous support tube with Halloysite sol under pressure and temperature of 100 and 160 °C for 24, 48 and 64 h, respectively. XRD and FTIR reveal that the tubular structure remains intact under experimental conditions. In contrast, the morphology of pristine Hal powder treated at the specified temperature and under in situ developed autogenous pressure shows a significant textural change in the nanotubular morphology observed from FESEM. At 100 °C, lumen porosity remains intact, but at 160 °C, under higher pressure, lumen mouth sealing, conjoining and coalescence of the halloysite nanotubes (HNT) result. In addition, for both temperatures under existing operating pressure, the effect of 24 h time duration on morphology is less. For practical viability, a preliminary study for dye removal is carried out with H1 membrane coating, which shows promising %rejection values. This study on powders and membrane coatings might thus help to assign new application fields, such as membrane-based separation utilizing the porous nature of HNT by controlling different process parameters.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.