Meng-zhuo Zhang, Hai-bao Hu, Liu-zhen Ren, Lu-yao Bao, Jun Wen, Luo Xie
{"title":"Research progress of slippage characteristic and gas film stability enhancement methods on biomimetic hydrophobic surfaces","authors":"Meng-zhuo Zhang, Hai-bao Hu, Liu-zhen Ren, Lu-yao Bao, Jun Wen, Luo Xie","doi":"10.1007/s42241-024-0004-z","DOIUrl":null,"url":null,"abstract":"<div><p>The biomimetic hydrophobic surface is a potentially efficient underwater drag reduction method and the drag reduction mechanism of this kind of surface comes from the interfacial slippage. For now, it is a hotspot to grasp the slippage characteristic and explore slippage enhancement strategies. This paper not only summarizes our numerical simulation and experimental results of slippage characteristic at the solid-liquid interface (SLI) of hydrophobic surfaces (HS) and the gas-liquid interface (GLI) of superhydrophobic surfaces (SHS) in recent years, but also introduces some innovative methods that can effectively improve the gas film stability and drag reduction effect of SHS. First, we used the molecular dynamics (MD) simulation method to figure out the effect of the solid-liquid interaction strength, the system temperature and the shear rate on the slippage of SLI, and expound their action mechanism from molecular scale. Then, by MD and multibody dissipative particle dynamics (MDPD) method, the slippage behavior at the GLI was studied under the influence of the microstructure size and the flow driving velocity. We proposed a new kind of hybrid slip boundary condition model to describe the slippage characteristic on GLI. In addition, we found through experiment that a three-dimensional backflow will appear on the GLI under the interfacial adsorption of surfactants, and the backflow direction will reverse with the change of GLI morphology. Finally, we put forward the wettability step structure and gas injection method to enhance the stability and drag reduction effect of the gas film on SHS.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"36 1","pages":"87 - 101"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-024-0004-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The biomimetic hydrophobic surface is a potentially efficient underwater drag reduction method and the drag reduction mechanism of this kind of surface comes from the interfacial slippage. For now, it is a hotspot to grasp the slippage characteristic and explore slippage enhancement strategies. This paper not only summarizes our numerical simulation and experimental results of slippage characteristic at the solid-liquid interface (SLI) of hydrophobic surfaces (HS) and the gas-liquid interface (GLI) of superhydrophobic surfaces (SHS) in recent years, but also introduces some innovative methods that can effectively improve the gas film stability and drag reduction effect of SHS. First, we used the molecular dynamics (MD) simulation method to figure out the effect of the solid-liquid interaction strength, the system temperature and the shear rate on the slippage of SLI, and expound their action mechanism from molecular scale. Then, by MD and multibody dissipative particle dynamics (MDPD) method, the slippage behavior at the GLI was studied under the influence of the microstructure size and the flow driving velocity. We proposed a new kind of hybrid slip boundary condition model to describe the slippage characteristic on GLI. In addition, we found through experiment that a three-dimensional backflow will appear on the GLI under the interfacial adsorption of surfactants, and the backflow direction will reverse with the change of GLI morphology. Finally, we put forward the wettability step structure and gas injection method to enhance the stability and drag reduction effect of the gas film on SHS.
仿生物疏水表面是一种潜在的高效水下减阻方法,这种表面的减阻机理来自于界面滑动。目前,掌握滑动特性、探索滑动增强策略是一个热点。本文不仅总结了近年来我们对疏水表面(HS)固液界面(SLI)和超疏水表面(SHS)气液界面(GLI)滑移特性的数值模拟和实验结果,还介绍了一些能有效改善SHS气膜稳定性和减阻效果的创新方法。首先,我们利用分子动力学(MD)模拟方法阐明了固液相互作用强度、体系温度和剪切速率对SLI滑移的影响,并从分子尺度阐述了它们的作用机理。然后,通过 MD 和多体耗散粒子动力学(MDPD)方法,研究了微结构尺寸和流动驱动速度影响下 GLI 的滑移行为。我们提出了一种新的混合滑移边界条件模型来描述 GLI 上的滑移特性。此外,我们通过实验发现,在表面活性剂的界面吸附作用下,GLI 上会出现三维逆流,且逆流方向会随着 GLI 形态的变化而逆转。最后,我们提出了润湿阶梯结构和气体注入方法,以增强气膜在 SHS 上的稳定性和减阻效果。
期刊介绍:
Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.