{"title":"Accuracy and feasibility of 3D virtual dynamic fit technology","authors":"Youngsook Kim, Fatma Baytar","doi":"10.1108/ijcst-12-2023-0182","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The research evaluated the feasibility of 3D dynamic fit utilizing female compression tops by comparatively analyzing the virtual and actual dynamic fit.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Six female participants were 3D body-scanned and photographed in compression tops in four types of athletic movements (pull-up, kettlebell swing, circle-crunch and sit-up). Fit measurements, waist cross-sectional areas, waist width, waist depth, numerical simulation of clothing pressure (kPa) and objective pressure measurements (kPa) were collected from 3D virtual animation, 3D fit scan data and actual photos with the four types of athletic motions. The data were comparatively investigated between virtual and actual dynamic fit.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The 3D-animated body was not reflected with human body deformation because only bone structure was changed while maintaining the constant forms of muscle and body surface in athletic movements. Due to this consistency of virtual dynamic fit, there were significant differences with the actual dynamic fit at the top length, shoulder width and waist cross-sectional areas. Also, the virtual dynamic pressure indicated significantly higher levels than the objective dynamic pressure while presenting no significant correlations at the front neckline, breast, lateral waist, upper back, back armhole and back waist.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This study is the first to verify multiple aspects of virtual dynamic fit using 3D digital technology. This study provided useful information about which aspects of the current virtual animation need to be improved to apply in the dynamic fit evaluation.</p><!--/ Abstract__block -->","PeriodicalId":50330,"journal":{"name":"International Journal of Clothing Science and Technology","volume":"13 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Clothing Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ijcst-12-2023-0182","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The research evaluated the feasibility of 3D dynamic fit utilizing female compression tops by comparatively analyzing the virtual and actual dynamic fit.
Design/methodology/approach
Six female participants were 3D body-scanned and photographed in compression tops in four types of athletic movements (pull-up, kettlebell swing, circle-crunch and sit-up). Fit measurements, waist cross-sectional areas, waist width, waist depth, numerical simulation of clothing pressure (kPa) and objective pressure measurements (kPa) were collected from 3D virtual animation, 3D fit scan data and actual photos with the four types of athletic motions. The data were comparatively investigated between virtual and actual dynamic fit.
Findings
The 3D-animated body was not reflected with human body deformation because only bone structure was changed while maintaining the constant forms of muscle and body surface in athletic movements. Due to this consistency of virtual dynamic fit, there were significant differences with the actual dynamic fit at the top length, shoulder width and waist cross-sectional areas. Also, the virtual dynamic pressure indicated significantly higher levels than the objective dynamic pressure while presenting no significant correlations at the front neckline, breast, lateral waist, upper back, back armhole and back waist.
Originality/value
This study is the first to verify multiple aspects of virtual dynamic fit using 3D digital technology. This study provided useful information about which aspects of the current virtual animation need to be improved to apply in the dynamic fit evaluation.
期刊介绍:
Addresses all aspects of the science and technology of clothing-objective measurement techniques, control of fibre and fabric, CAD systems, product testing, sewing, weaving and knitting, inspection systems, drape and finishing, etc. Academic and industrial research findings are published after a stringent review has taken place.