{"title":"Rigor with machine learning from field theory to the Poincaré conjecture","authors":"Sergei Gukov, James Halverson, Fabian Ruehle","doi":"10.1038/s42254-024-00709-0","DOIUrl":null,"url":null,"abstract":"Despite their successes, machine learning techniques are often stochastic, error-prone and blackbox. How could they then be used in fields such as theoretical physics and pure mathematics for which error-free results and deep understanding are a must? In this Perspective, we discuss techniques for obtaining zero-error results with machine learning, with a focus on theoretical physics and pure mathematics. Non-rigorous methods can enable rigorous results via conjecture generation or verification by reinforcement learning. We survey applications of these techniques-for-rigor ranging from string theory to the smooth 4D Poincaré conjecture in low-dimensional topology. We also discuss connections between machine learning theory and mathematics or theoretical physics such as a new approach to field theory motivated by neural network theory, and a theory of Riemannian metric flows induced by neural network gradient descent, which encompasses Perelman’s formulation of the Ricci flow that was used to solve the 3D Poincaré conjecture. Machine learning techniques may appear ill-suited for application in fields that prioritize rigor and deep understanding; however, they have recently found unexpected uses in theoretical physics and pure mathematics. In this Perspective, Gukov, Halverson and Ruehle have discussed rigorous applications of machine learning to theoretical physics and pure mathematics.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 5","pages":"310-319"},"PeriodicalIF":44.8000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-024-00709-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Despite their successes, machine learning techniques are often stochastic, error-prone and blackbox. How could they then be used in fields such as theoretical physics and pure mathematics for which error-free results and deep understanding are a must? In this Perspective, we discuss techniques for obtaining zero-error results with machine learning, with a focus on theoretical physics and pure mathematics. Non-rigorous methods can enable rigorous results via conjecture generation or verification by reinforcement learning. We survey applications of these techniques-for-rigor ranging from string theory to the smooth 4D Poincaré conjecture in low-dimensional topology. We also discuss connections between machine learning theory and mathematics or theoretical physics such as a new approach to field theory motivated by neural network theory, and a theory of Riemannian metric flows induced by neural network gradient descent, which encompasses Perelman’s formulation of the Ricci flow that was used to solve the 3D Poincaré conjecture. Machine learning techniques may appear ill-suited for application in fields that prioritize rigor and deep understanding; however, they have recently found unexpected uses in theoretical physics and pure mathematics. In this Perspective, Gukov, Halverson and Ruehle have discussed rigorous applications of machine learning to theoretical physics and pure mathematics.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.