The attoscience of strong-field-driven solids

IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED Nature Reviews Physics Pub Date : 2024-12-16 DOI:10.1038/s42254-024-00784-3
Stefano M. Cavaletto, Katarzyna M. Kowalczyk, Francisco O. Navarrete, Javier Rivera-Dean
{"title":"The attoscience of strong-field-driven solids","authors":"Stefano M. Cavaletto, Katarzyna M. Kowalczyk, Francisco O. Navarrete, Javier Rivera-Dean","doi":"10.1038/s42254-024-00784-3","DOIUrl":null,"url":null,"abstract":"The ultrafast dynamics of electrons in solid-state systems have garnered considerable attention recently, driven by technological advancements in the generation of short laser pulses from femtosecond down to attosecond durations. Techniques such as high-order harmonic generation (HHG) and attosecond transient absorption and reflection spectroscopy (ATAS and ATRS) provide valuable insights into sub-cycle dynamics, rendering the interaction of solids with intense laser fields a pivotal area of research. However, discrepancies in the explanation of the underlying mechanisms remain, requiring further analysis. This Perspective focuses on the relationship between the above techniques, highlighting their efficacy in probing charge dynamics induced by intense laser pulses in solid-state systems. We emphasize the importance of unified theoretical frameworks to advance our understanding of the strong-field attoscience of solids, while recognizing points of disparity between theoretical descriptions and experimental findings. By drawing attention to the complementary nature of HHG and both ATAS and ATRS, and by illustrating the key applications enabled by them, this Perspective aims to motivate stronger collaborations and concerted efforts to bridge the existing gaps between theory and experiment and propel the field forward. This Perspective explores attosecond physics in solids, focussing on high harmonic generation and attosecond transient absorption and reflection spectroscopy. Combining physical realizations and theoretical concepts is a challenge for future progress.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 1","pages":"38-49"},"PeriodicalIF":44.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-024-00784-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The ultrafast dynamics of electrons in solid-state systems have garnered considerable attention recently, driven by technological advancements in the generation of short laser pulses from femtosecond down to attosecond durations. Techniques such as high-order harmonic generation (HHG) and attosecond transient absorption and reflection spectroscopy (ATAS and ATRS) provide valuable insights into sub-cycle dynamics, rendering the interaction of solids with intense laser fields a pivotal area of research. However, discrepancies in the explanation of the underlying mechanisms remain, requiring further analysis. This Perspective focuses on the relationship between the above techniques, highlighting their efficacy in probing charge dynamics induced by intense laser pulses in solid-state systems. We emphasize the importance of unified theoretical frameworks to advance our understanding of the strong-field attoscience of solids, while recognizing points of disparity between theoretical descriptions and experimental findings. By drawing attention to the complementary nature of HHG and both ATAS and ATRS, and by illustrating the key applications enabled by them, this Perspective aims to motivate stronger collaborations and concerted efforts to bridge the existing gaps between theory and experiment and propel the field forward. This Perspective explores attosecond physics in solids, focussing on high harmonic generation and attosecond transient absorption and reflection spectroscopy. Combining physical realizations and theoretical concepts is a challenge for future progress.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
47.80
自引率
0.50%
发文量
122
期刊介绍: Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.
期刊最新文献
A year to celebrate quantum physics Bringing quantum physics to new generations Hydride superconductivity is here to stay Publisher Correction: Physics of exotic nuclei The attoscience of strong-field-driven solids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1