Center-injected Polishing for Efficient Slurry Utilization

IF 5.3 3区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Precision Engineering and Manufacturing-Green Technology Pub Date : 2024-04-02 DOI:10.1007/s40684-024-00622-y
{"title":"Center-injected Polishing for Efficient Slurry Utilization","authors":"","doi":"10.1007/s40684-024-00622-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Polishing is one of the most crucial finishing processes and usually consumes a sufficient slurry to achieve an ultra-fine surface. However, excess slurry consumption is environmentally costly, as it generates a large amount of wastewater. Given the growing environmental concerns, it is essential to improve the process efficiency and minimize the environmental burdens. Considering this, a novel polishing system, herein referred to as center-injected polishing, is proposed by injecting slurry into the center of the polishing pad. Here, it is aimed to utilize the centrifugal force of the rotating pad, with the aim of efficient slurry utilization. The slurry is directly introduced between the pad and the workpiece, then dispersed across the pad by centrifugal force. A simple experiment was conducted with computational analysis using the specially designed polishing tool to prove the concept; slurry was distributed more uniformly in center-injected polishing when compared to the conventional process. The polishing system was then constructed to evaluate polishing performances. Based on sets of experiments in the polishing of silicon carbide (SiC), slurry efficiencies and productivity were analyzed with respect to different rotational speeds and slurry supply rates. The material removal rate (MRR) was more than twice the rate achieved by conventional polishing at the same processing conditions; whereas the slurry consumption was approximately 60% less at the same MRR. The extended Preston equation was used to predict the MRR of the new process. It is expected that efficient slurry utilization will reduce the environmental footprint of abrasive processes.</p>","PeriodicalId":14238,"journal":{"name":"International Journal of Precision Engineering and Manufacturing-Green Technology","volume":"48 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing-Green Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40684-024-00622-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Polishing is one of the most crucial finishing processes and usually consumes a sufficient slurry to achieve an ultra-fine surface. However, excess slurry consumption is environmentally costly, as it generates a large amount of wastewater. Given the growing environmental concerns, it is essential to improve the process efficiency and minimize the environmental burdens. Considering this, a novel polishing system, herein referred to as center-injected polishing, is proposed by injecting slurry into the center of the polishing pad. Here, it is aimed to utilize the centrifugal force of the rotating pad, with the aim of efficient slurry utilization. The slurry is directly introduced between the pad and the workpiece, then dispersed across the pad by centrifugal force. A simple experiment was conducted with computational analysis using the specially designed polishing tool to prove the concept; slurry was distributed more uniformly in center-injected polishing when compared to the conventional process. The polishing system was then constructed to evaluate polishing performances. Based on sets of experiments in the polishing of silicon carbide (SiC), slurry efficiencies and productivity were analyzed with respect to different rotational speeds and slurry supply rates. The material removal rate (MRR) was more than twice the rate achieved by conventional polishing at the same processing conditions; whereas the slurry consumption was approximately 60% less at the same MRR. The extended Preston equation was used to predict the MRR of the new process. It is expected that efficient slurry utilization will reduce the environmental footprint of abrasive processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中心喷射抛光,实现浆料的高效利用
摘要 抛光是最关键的表面处理工艺之一,通常需要消耗足够的浆料才能获得超精细的表面。然而,过量的浆料消耗会产生大量废水,因此环境成本很高。鉴于人们对环境问题的日益关注,提高工艺效率并将环境负担降至最低至关重要。有鉴于此,我们提出了一种新型抛光系统,即向抛光垫中心注入浆料的中心喷射抛光系统。其目的是利用旋转抛光垫的离心力,从而有效地利用浆料。浆液直接进入抛光垫和工件之间,然后在离心力的作用下在抛光垫上分散。为了证明这一概念,我们使用专门设计的抛光工具进行了简单的实验和计算分析;与传统工艺相比,中心喷射抛光的浆液分布更均匀。随后,构建了抛光系统,以评估抛光性能。在碳化硅(SiC)抛光实验的基础上,分析了不同转速和浆料供应率下的浆料效率和生产率。在相同的加工条件下,材料去除率(MRR)是传统抛光方法的两倍多;而在相同的材料去除率下,浆液消耗量减少了约 60%。扩展的普雷斯顿方程被用来预测新工艺的材料去除率。预计泥浆的有效利用将减少研磨工艺对环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.50%
发文量
65
审稿时长
5.3 months
期刊介绍: Green Technology aspects of precision engineering and manufacturing are becoming ever more important in current and future technologies. New knowledge in this field will aid in the advancement of various technologies that are needed to gain industrial competitiveness. To this end IJPEM - Green Technology aims to disseminate relevant developments and applied research works of high quality to the international community through efficient and rapid publication. IJPEM - Green Technology covers novel research contributions in all aspects of "Green" precision engineering and manufacturing.
期刊最新文献
Online Vibration Detection in High-Speed Robotic Milling Process Based on Wavelet Energy Entropy of Acoustic Emission The Abrasion Robotic Solutions: A review Integration of Cu-Doped TiO2 Nanoparticles on High Surface UV-Laser-Induced Graphene for Enhanced Photodegradation, De-icing, and Anti-bacterial Surface Applications Flux Filling Rate Effect on Weld Bead Deposition of Recycled Titanium Chip Tubular Wire Bipolar Current Collectors of Carbon Fiber Reinforced Polymer for Laminates of Structural Battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1