Influence of Nozzle Temperature on Gas Emissions and Mechanical Properties in Material Extrusion-based Additive Manufacturing of Super Engineering Plastics
Seong Je Park, Ji Sun Lee, Ji Eun Lee, Seung Ki Moon, Yong Son, Suk-Hee Park
{"title":"Influence of Nozzle Temperature on Gas Emissions and Mechanical Properties in Material Extrusion-based Additive Manufacturing of Super Engineering Plastics","authors":"Seong Je Park, Ji Sun Lee, Ji Eun Lee, Seung Ki Moon, Yong Son, Suk-Hee Park","doi":"10.1007/s40684-024-00614-y","DOIUrl":null,"url":null,"abstract":"<p>Gas emissions pose significant environmental and health concerns in thermal processes involving thermoplastic polymers. This issue also extends to material extrusion (MEX) additive manufacturing (AM), which is a thermal process. Therefore, it is crucial to examine gas emissions during MEX AM. This study focused on super engineering plastics (SEPs) such as polyetheretherketone, polysulfone, and polyetherimide. A portable emission-measuring device was employed to analyze total volatile organic compounds (TVOCs) and formaldehyde (HCHO) emitted during MEX AM at various nozzle temperatures. Additionally, the anisotropy of tensile strengths in the SEP specimens fabricated in the longitudinal and transverse deposition directions was evaluated. Overall, the SEPs emitted TVOCs and HCHO within the range from not detected (N/D) to 0.595 mg/m<sup>3</sup> and from N/D to 0.139 mg/m<sup>3</sup>, respectively, based on the nozzle temperature during MEX AM. Moreover, the tensile strengths varied from 59.0 to 83.4 MPa in the longitudinal deposition direction and from 19.2 to 55.7 MPa in the transverse deposition direction. Lower nozzle temperatures not only resulted in reduced gas emissions but also led to lower tensile strength in all the SEPs. However, the strategic use of longitudinal deposition can mitigate the reduction in tensile strength. To demonstrate this, a case study involving the fabrication of a Warren truss bridge was presented. This study provides guidelines for the deposition strategy in MEX using SEPs under AM conditions, aiming to minimize gas emissions while maintaining a tensile strength ranging from 81.1% to 88.7% of the bulk specimen strength.</p>","PeriodicalId":14238,"journal":{"name":"International Journal of Precision Engineering and Manufacturing-Green Technology","volume":"50 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing-Green Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40684-024-00614-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Gas emissions pose significant environmental and health concerns in thermal processes involving thermoplastic polymers. This issue also extends to material extrusion (MEX) additive manufacturing (AM), which is a thermal process. Therefore, it is crucial to examine gas emissions during MEX AM. This study focused on super engineering plastics (SEPs) such as polyetheretherketone, polysulfone, and polyetherimide. A portable emission-measuring device was employed to analyze total volatile organic compounds (TVOCs) and formaldehyde (HCHO) emitted during MEX AM at various nozzle temperatures. Additionally, the anisotropy of tensile strengths in the SEP specimens fabricated in the longitudinal and transverse deposition directions was evaluated. Overall, the SEPs emitted TVOCs and HCHO within the range from not detected (N/D) to 0.595 mg/m3 and from N/D to 0.139 mg/m3, respectively, based on the nozzle temperature during MEX AM. Moreover, the tensile strengths varied from 59.0 to 83.4 MPa in the longitudinal deposition direction and from 19.2 to 55.7 MPa in the transverse deposition direction. Lower nozzle temperatures not only resulted in reduced gas emissions but also led to lower tensile strength in all the SEPs. However, the strategic use of longitudinal deposition can mitigate the reduction in tensile strength. To demonstrate this, a case study involving the fabrication of a Warren truss bridge was presented. This study provides guidelines for the deposition strategy in MEX using SEPs under AM conditions, aiming to minimize gas emissions while maintaining a tensile strength ranging from 81.1% to 88.7% of the bulk specimen strength.
期刊介绍:
Green Technology aspects of precision engineering and manufacturing are becoming ever more important in current and future technologies. New knowledge in this field will aid in the advancement of various technologies that are needed to gain industrial competitiveness. To this end IJPEM - Green Technology aims to disseminate relevant developments and applied research works of high quality to the international community through efficient and rapid publication. IJPEM - Green Technology covers novel research contributions in all aspects of "Green" precision engineering and manufacturing.