Whan Lee, Seyed Mohammad Mehdi Sajadieh, Hye Kyung Choi, Jisoo Park, Sang Do Noh
{"title":"Application of Reinforcement Learning to Dyeing Processes for Residual Dye Reduction","authors":"Whan Lee, Seyed Mohammad Mehdi Sajadieh, Hye Kyung Choi, Jisoo Park, Sang Do Noh","doi":"10.1007/s40684-024-00627-7","DOIUrl":null,"url":null,"abstract":"<p>Sustainability has become a prominent theme in the manufacturing industry, with an emphasis on optimal process configurations that enable environmentally friendly and economically viable operations. Particularly, the textile dyeing and finishing industry has garnered special attention due to its substantial water consumption and consequential wastewater generation. Moreover, dye residues in textile wastewater contain a multitude of chemical substances, posing a serious threat to environmental pollution. Therefore, there is a pressing need for effective decision-making tools to reduce dye residues. In this study, we introduce a reinforcement learning-based model to predict waste discharge in the textile dyeing and finishing industry and recommend dyeing process variables to minimize such waste. Leveraging manufacturing data collected from real production facilities, we constructed a Gradient Boosting model for waste prediction and developed a Q-learning-based process variables recommendation model for dye residue reduction. The recommendation model demonstrated high predictive performance with an R-value of 0.96, and through process configuration recommendations, achieved an average reduction of 66.58% in dye residue. These results have been validated through the collection of on-site information and experiments. This study proposes an innovative approach to effectively predict and reduce residual dyes generated in the dyeing and processing industry. However, a limitation of the developed dyeing process recommendation model is that it was tested on only two out of 124 formulations, making it challenging to generalize the model's performance. More extensive training data is necessary. These facts suggest that, if addressed in future research, improvements can overcome practical constraints and contribute to enhancing the prospects for future decision-making. It is anticipated that such advancements will strengthen the sustainability of the dyeing and processing industry, fostering environmentally friendly operations and contributing to a sustainable future.</p>","PeriodicalId":14238,"journal":{"name":"International Journal of Precision Engineering and Manufacturing-Green Technology","volume":"59 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing-Green Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40684-024-00627-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainability has become a prominent theme in the manufacturing industry, with an emphasis on optimal process configurations that enable environmentally friendly and economically viable operations. Particularly, the textile dyeing and finishing industry has garnered special attention due to its substantial water consumption and consequential wastewater generation. Moreover, dye residues in textile wastewater contain a multitude of chemical substances, posing a serious threat to environmental pollution. Therefore, there is a pressing need for effective decision-making tools to reduce dye residues. In this study, we introduce a reinforcement learning-based model to predict waste discharge in the textile dyeing and finishing industry and recommend dyeing process variables to minimize such waste. Leveraging manufacturing data collected from real production facilities, we constructed a Gradient Boosting model for waste prediction and developed a Q-learning-based process variables recommendation model for dye residue reduction. The recommendation model demonstrated high predictive performance with an R-value of 0.96, and through process configuration recommendations, achieved an average reduction of 66.58% in dye residue. These results have been validated through the collection of on-site information and experiments. This study proposes an innovative approach to effectively predict and reduce residual dyes generated in the dyeing and processing industry. However, a limitation of the developed dyeing process recommendation model is that it was tested on only two out of 124 formulations, making it challenging to generalize the model's performance. More extensive training data is necessary. These facts suggest that, if addressed in future research, improvements can overcome practical constraints and contribute to enhancing the prospects for future decision-making. It is anticipated that such advancements will strengthen the sustainability of the dyeing and processing industry, fostering environmentally friendly operations and contributing to a sustainable future.
期刊介绍:
Green Technology aspects of precision engineering and manufacturing are becoming ever more important in current and future technologies. New knowledge in this field will aid in the advancement of various technologies that are needed to gain industrial competitiveness. To this end IJPEM - Green Technology aims to disseminate relevant developments and applied research works of high quality to the international community through efficient and rapid publication. IJPEM - Green Technology covers novel research contributions in all aspects of "Green" precision engineering and manufacturing.