Characteristics of the Urban Heat Island in Dhaka, Bangladesh, and Its Interaction with Heat Waves

IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2024-04-02 DOI:10.1007/s13143-024-00362-8
Abeda Tabassum, Kyeongjoo Park, Jaemyeong Mango Seo, Ji-Young Han, Jong-Jin Baik
{"title":"Characteristics of the Urban Heat Island in Dhaka, Bangladesh, and Its Interaction with Heat Waves","authors":"Abeda Tabassum,&nbsp;Kyeongjoo Park,&nbsp;Jaemyeong Mango Seo,&nbsp;Ji-Young Han,&nbsp;Jong-Jin Baik","doi":"10.1007/s13143-024-00362-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the characteristics of the urban heat island (UHI) in Dhaka, the densely populated capital city of Bangladesh under the influence of the South Asian monsoon, and its interaction with heat waves. For this, meteorological data at Dhaka (urban) and Madaripur (rural) stations and reanalysis data for the period of 1995–2019 are used for analysis. Here, the UHI intensity is defined as the urban-rural difference in 2-m temperature, and a heat wave is defined as the phenomenon which persists for two or more consecutive days with the daily maximum 2-m temperature exceeding its 90th percentile. The UHI intensity in Dhaka is in an increasing trend over the past 25 years (0.21 °C per decade). The average UHI intensity in Dhaka is 0.48 °C. The UHI is strongest in winter (0.95 °C) and weakest in the monsoon season (0.23 °C). In all seasons, the UHI is strongest at 2100 LST. The average daily maximum UHI intensity in Dhaka is 2.15 °C. Through the multiple linear regression analysis, the relative importance of previous-day daily maximum UHI intensity (PER), wind speed, relative humidity (RH), and cloud fraction which affect the daily maximum UHI intensity is examined. In the pre-monsoon season, RH is the most important variable followed by PER. In the monsoon season, RH is the predominantly important variable. In the post-monsoon season and winter, PER is the most important variable followed by RH. The occurrence frequency of heat waves in Dhaka shows a statistically significant increasing trend in the monsoon season (5.8 days per decade). It is found that heat waves in Bangladesh are associated with mid-to-upper tropospheric anticyclonic-flow and high-pressure anomalies in the pre-monsoon season and low-to-mid tropospheric anticyclonic-flow and high-pressure anomalies in the monsoon season. Under heat waves, the UHI intensity is synergistically intensified in both daytime and nighttime (nighttime only) in the pre-monsoon (monsoon) season. The decreases in relative humidity and cloud fraction are favorable for the synergistic UHI-heat wave interaction.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 4","pages":"479 - 493"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-024-00362-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-024-00362-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the characteristics of the urban heat island (UHI) in Dhaka, the densely populated capital city of Bangladesh under the influence of the South Asian monsoon, and its interaction with heat waves. For this, meteorological data at Dhaka (urban) and Madaripur (rural) stations and reanalysis data for the period of 1995–2019 are used for analysis. Here, the UHI intensity is defined as the urban-rural difference in 2-m temperature, and a heat wave is defined as the phenomenon which persists for two or more consecutive days with the daily maximum 2-m temperature exceeding its 90th percentile. The UHI intensity in Dhaka is in an increasing trend over the past 25 years (0.21 °C per decade). The average UHI intensity in Dhaka is 0.48 °C. The UHI is strongest in winter (0.95 °C) and weakest in the monsoon season (0.23 °C). In all seasons, the UHI is strongest at 2100 LST. The average daily maximum UHI intensity in Dhaka is 2.15 °C. Through the multiple linear regression analysis, the relative importance of previous-day daily maximum UHI intensity (PER), wind speed, relative humidity (RH), and cloud fraction which affect the daily maximum UHI intensity is examined. In the pre-monsoon season, RH is the most important variable followed by PER. In the monsoon season, RH is the predominantly important variable. In the post-monsoon season and winter, PER is the most important variable followed by RH. The occurrence frequency of heat waves in Dhaka shows a statistically significant increasing trend in the monsoon season (5.8 days per decade). It is found that heat waves in Bangladesh are associated with mid-to-upper tropospheric anticyclonic-flow and high-pressure anomalies in the pre-monsoon season and low-to-mid tropospheric anticyclonic-flow and high-pressure anomalies in the monsoon season. Under heat waves, the UHI intensity is synergistically intensified in both daytime and nighttime (nighttime only) in the pre-monsoon (monsoon) season. The decreases in relative humidity and cloud fraction are favorable for the synergistic UHI-heat wave interaction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
孟加拉国达卡城市热岛的特征及其与热浪的相互作用
摘要 本研究探讨了孟加拉国人口稠密的首都达卡在南亚季风影响下的城市热岛(UHI)特征及其与热浪的相互作用。为此,我们使用了达卡(城市)和马达里布尔(农村)站点的气象数据以及 1995-2019 年期间的再分析数据进行分析。在此,UHI 强度被定义为 2 米气温的城乡差异,热浪被定义为连续两天或两天以上日最高 2 米气温超过第 90 百分位数的现象。在过去 25 年中,达卡的 UHI 强度呈上升趋势(每十年上升 0.21 °C)。达卡的平均 UHI 强度为 0.48 °C。UHI 在冬季最强(0.95 °C),在季风季节最弱(0.23 °C)。在所有季节,在 2100 LST 时的 UHI 都最强。达卡的日平均最大 UHI 强度为 2.15 °C。通过多元线性回归分析,研究了影响日最大 UHI 强度的前一天日最大 UHI 强度 (PER)、风速、相对湿度 (RH) 和云量的相对重要性。在前季风季节,相对湿度是最重要的变量,其次是 PER。在季风季节,相对湿度是最重要的变量。在季风后季节和冬季,相对湿度是最重要的变量,其次是降雨量。达卡的热浪发生频率在季风季节呈显著上升趋势(每十年 5.8 天)。研究发现,孟加拉国的热浪与季风季节前对流层中高层反气旋流和高压异常有关,与季风季节对流层中低层反气旋流和高压异常有关。在热浪情况下,季风前(季风季节)白天和夜间(仅夜间)的 UHI 强度会协同增强。相对湿度和云量的减少有利于 UHI 与热浪的协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asia-Pacific Journal of Atmospheric Sciences
Asia-Pacific Journal of Atmospheric Sciences 地学-气象与大气科学
CiteScore
5.50
自引率
4.30%
发文量
34
审稿时长
>12 weeks
期刊介绍: The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.
期刊最新文献
Impact of Arctic Sea Ice Representation on Extended Medium-Range Forecasting: a Case Study of the 2016 Barents-Kara Sea Warming Event Comparative Analysis of GloSea6 Hindcasts for Two Extreme El Niño Events and Their Impact on Indo-Western North Pacific Climate Microphysical Characteristics of Snowfall in Seoul, South Korea and Their Changes with Meteorological Conditions Correction: Forecast Accuracy and Physics Sensitivity in High-Resolution Simulations of Precipitation Events in Summer 2022 by the Korean Integrated Model Comprehensive Analysis of PM2.5 Concentrations in the Seoul Metro Underground Stations: Relationships with Indoor Sources and Outdoor Air Quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1