Chloroplast-actin filaments decide the direction of chloroplast avoidance movement under strong light in Arabidopsis thaliana

IF 2.7 3区 生物学 Q2 PLANT SCIENCES Journal of Plant Research Pub Date : 2024-04-10 DOI:10.1007/s10265-024-01540-5
Masamitsu Wada, Takeshi Higa, Kaoru Katoh, Nobuko Moritoki, Tomonori Nakai, Yuri Nishino, Atsuo Miyazawa, Shinsuke Shibata, Yoshinobu Mineyuki
{"title":"Chloroplast-actin filaments decide the direction of chloroplast avoidance movement under strong light in Arabidopsis thaliana","authors":"Masamitsu Wada, Takeshi Higa, Kaoru Katoh, Nobuko Moritoki, Tomonori Nakai, Yuri Nishino, Atsuo Miyazawa, Shinsuke Shibata, Yoshinobu Mineyuki","doi":"10.1007/s10265-024-01540-5","DOIUrl":null,"url":null,"abstract":"<p>Chloroplast-actin (cp-actin) filaments are crucial for light-induced chloroplast movement, and appear in the front region of moving chloroplasts when visualized using GFP-mouse Talin. They are short and thick, exist between a chloroplast and the plasma membrane, and move actively and rapidly compared to cytoplasmic long actin filaments that run through a cell. The average period during which a cp-actin filament was observed at the same position was less than 0.5 s. The average lengths of the cp-actin filaments calculated from those at the front region of the moving chloroplast and those around the chloroplast periphery after stopping the movement were almost the same, approximately 0.8 µm. Each cp-actin filament is shown as a dotted line consisting of 4–5 dots. The vector sum of cp-actin filaments in a moving chloroplast is parallel to the moving direction of the chloroplast, suggesting that the direction of chloroplast movement is regulated by the vector sum of cp-actin filaments. However, once the chloroplasts stopped moving, the vector sum of the cp-actin filaments around the chloroplast periphery was close to zero, indicating that the direction of movement was undecided. To determine the precise structure of cp-actin filaments under electron microscopy, Arabidopsis leaves and fern <i>Adiantum capillus-veneris</i> gametophytes were frozen using a high-pressure freezer, and observed under electron microscopy. However, no bundled microfilaments were found, suggesting that the cp-actin filaments were unstable even under high-pressure freezing.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01540-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Chloroplast-actin (cp-actin) filaments are crucial for light-induced chloroplast movement, and appear in the front region of moving chloroplasts when visualized using GFP-mouse Talin. They are short and thick, exist between a chloroplast and the plasma membrane, and move actively and rapidly compared to cytoplasmic long actin filaments that run through a cell. The average period during which a cp-actin filament was observed at the same position was less than 0.5 s. The average lengths of the cp-actin filaments calculated from those at the front region of the moving chloroplast and those around the chloroplast periphery after stopping the movement were almost the same, approximately 0.8 µm. Each cp-actin filament is shown as a dotted line consisting of 4–5 dots. The vector sum of cp-actin filaments in a moving chloroplast is parallel to the moving direction of the chloroplast, suggesting that the direction of chloroplast movement is regulated by the vector sum of cp-actin filaments. However, once the chloroplasts stopped moving, the vector sum of the cp-actin filaments around the chloroplast periphery was close to zero, indicating that the direction of movement was undecided. To determine the precise structure of cp-actin filaments under electron microscopy, Arabidopsis leaves and fern Adiantum capillus-veneris gametophytes were frozen using a high-pressure freezer, and observed under electron microscopy. However, no bundled microfilaments were found, suggesting that the cp-actin filaments were unstable even under high-pressure freezing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拟南芥叶绿体-肌动蛋白丝决定叶绿体在强光下的避光运动方向
叶绿体肌动蛋白(cp-actin)丝对光诱导的叶绿体运动至关重要,使用 GFP 鼠 Talin 观察时,它们会出现在运动的叶绿体前部区域。它们又短又粗,存在于叶绿体和质膜之间,与贯穿细胞的细胞质长肌动蛋白丝相比,它们的运动活跃而迅速。在同一位置观察到的 cp 肌动蛋白丝的平均时间不到 0.5 秒。根据叶绿体运动前端区域的 cp 肌动蛋白丝和停止运动后叶绿体外围区域的 cp 肌动蛋白丝计算得出的平均长度几乎相同,约为 0.8 微米。每个 cp-actin 细丝显示为由 4-5 个点组成的虚线。运动中的叶绿体中 cp-actin 细丝的矢量和与叶绿体的运动方向平行,这表明叶绿体的运动方向受 cp-actin 细丝矢量和的调节。然而,一旦叶绿体停止运动,叶绿体外围的 cp-actin 细丝的矢量和就接近于零,这表明叶绿体的运动方向是不确定的。为了在电子显微镜下确定 cp-actin 细丝的精确结构,拟南芥叶片和蕨类植物 Adiantum capillus-veneris 配子体被高压冷冻,并在电子显微镜下进行观察。然而,没有发现成束的微丝,这表明即使在高压冷冻条件下,cp-肌动蛋白丝也不稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
期刊最新文献
Acknowledgement. Intricate intracellular kinase network regulates the Spodoptera lituta-derived elicitor response signaling in Arabidopsis. Female flowers with short ovaries in 'Lemon' cucumber (Cucumis sativus) plants and their progeny carrying the mm genotype (CS-ACS2 genes with c.97G > T mutations): a novel trimonoecious phenotype. Identification and functional analysis of the Dof transcription factor genes in sugar beet. Expression of laccase and ascorbate oxidase affects lignin composition in Arabidopsis thaliana stems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1