Approximation Schemes for Geometric Knapsack for Packing Spheres and Fat Objects

Pritam Acharya, Sujoy Bhore, Aaryan Gupta, Arindam Khan, Bratin Mondal, Andreas Wiese
{"title":"Approximation Schemes for Geometric Knapsack for Packing Spheres and Fat Objects","authors":"Pritam Acharya, Sujoy Bhore, Aaryan Gupta, Arindam Khan, Bratin Mondal, Andreas Wiese","doi":"arxiv-2404.03981","DOIUrl":null,"url":null,"abstract":"We study the geometric knapsack problem in which we are given a set of\n$d$-dimensional objects (each with associated profits) and the goal is to find\nthe maximum profit subset that can be packed non-overlappingly into a given\n$d$-dimensional (unit hypercube) knapsack. Even if $d=2$ and all input objects\nare disks, this problem is known to be NP-hard [Demaine, Fekete, Lang, 2010].\nIn this paper, we give polynomial-time $(1+\\varepsilon)$-approximation\nalgorithms for the following types of input objects in any constant dimension\n$d$: - disks and hyperspheres, - a class of fat convex polygons that generalizes regular $k$-gons for $k\\ge\n5$ (formally, polygons with a constant number of edges, whose lengths are in a\nbounded range, and in which each angle is strictly larger than $\\pi/2$) - arbitrary fat convex objects that are sufficiently small compared to the\nknapsack. We remark that in our \\textsf{PTAS} for disks and hyperspheres, we output the\ncomputed set of objects, but for a $O_\\varepsilon(1)$ of them we determine\ntheir coordinates only up to an exponentially small error. However, it is not\nclear whether there always exists a $(1+\\varepsilon)$-approximate solution that\nuses only rational coordinates for the disks' centers. We leave this as an open\nproblem which is related to well-studied geometric questions in the realm of\ncircle packing.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.03981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the geometric knapsack problem in which we are given a set of $d$-dimensional objects (each with associated profits) and the goal is to find the maximum profit subset that can be packed non-overlappingly into a given $d$-dimensional (unit hypercube) knapsack. Even if $d=2$ and all input objects are disks, this problem is known to be NP-hard [Demaine, Fekete, Lang, 2010]. In this paper, we give polynomial-time $(1+\varepsilon)$-approximation algorithms for the following types of input objects in any constant dimension $d$: - disks and hyperspheres, - a class of fat convex polygons that generalizes regular $k$-gons for $k\ge 5$ (formally, polygons with a constant number of edges, whose lengths are in a bounded range, and in which each angle is strictly larger than $\pi/2$) - arbitrary fat convex objects that are sufficiently small compared to the knapsack. We remark that in our \textsf{PTAS} for disks and hyperspheres, we output the computed set of objects, but for a $O_\varepsilon(1)$ of them we determine their coordinates only up to an exponentially small error. However, it is not clear whether there always exists a $(1+\varepsilon)$-approximate solution that uses only rational coordinates for the disks' centers. We leave this as an open problem which is related to well-studied geometric questions in the realm of circle packing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于包装球体和胖物体的几何包的近似方案
我们研究的是几何背包问题,在这个问题中,我们给定了一组 $d$ 维的对象(每个对象都有相关的利润),目标是找到可以不重叠地装入给定 $d$ 维(单位超立方体)背包的最大利润子集。即使 $d=2$ 和所有输入对象都是磁盘,这个问题也是已知的 NP 难问题 [Demaine, Fekete, Lang, 2010]。在本文中,我们给出了多项式时间的 $(1+\varepsilon)$-approximationalgorithms 算法,适用于任意常量维度 $d$ 的以下类型输入对象:- 圆盘和超球, -一类胖凸多边形,它概括了 $k\ge5$ 的正则 $k$-gons(形式上,具有恒定边数的多边形,其长度在有边的范围内,且每个角严格大于 $\pi/2$) -任意胖凸对象,这些对象相对于 knapsack 足够小。我们注意到,在我们针对圆盘和超球的\textsf{PTAS}中,我们输出了计算出的对象集,但对于其中的$O_\varepsilon(1)$,我们确定它们的坐标只能达到指数级的小误差。然而,目前还不清楚是否总是存在一个$(1+\varepsilon)$近似解,它只使用有理坐标来确定圆盘的中心。我们将此作为一个未决问题,它与圆包装领域中研究得很透彻的几何问题有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum Plane Bichromatic Spanning Trees Evolving Distributions Under Local Motion New Lower Bound and Algorithms for Online Geometric Hitting Set Problem Computing shortest paths amid non-overlapping weighted disks Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1