SimpliCity: Reconstructing Buildings with Simple Regularized 3D Models

Jean-Philippe Bauchet, Raphael Sulzer, Florent Lafarge, Yuliya Tarabalka
{"title":"SimpliCity: Reconstructing Buildings with Simple Regularized 3D Models","authors":"Jean-Philippe Bauchet, Raphael Sulzer, Florent Lafarge, Yuliya Tarabalka","doi":"arxiv-2404.08104","DOIUrl":null,"url":null,"abstract":"Automatic methods for reconstructing buildings from airborne LiDAR point\nclouds focus on producing accurate 3D models in a fast and scalable manner, but\nthey overlook the problem of delivering simple and regularized models to\npractitioners. As a result, output meshes often suffer from connectivity\napproximations around corners with either the presence of multiple vertices and\ntiny facets, or the necessity to break the planarity constraint on roof\nsections and facade components. We propose a 2D planimetric arrangement-based\nframework to address this problem. We first regularize, not the 3D planes as\ncommonly done in the literature, but a 2D polyhedral partition constructed from\nthe planes. Second, we extrude this partition to 3D by an optimization process\nthat guarantees the planarity of the roof sections as well as the preservation\nof the vertical discontinuities and horizontal rooftop edges. We show the\nbenefits of our approach against existing methods by producing simpler 3D\nmodels while offering a similar fidelity and efficiency.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.08104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic methods for reconstructing buildings from airborne LiDAR point clouds focus on producing accurate 3D models in a fast and scalable manner, but they overlook the problem of delivering simple and regularized models to practitioners. As a result, output meshes often suffer from connectivity approximations around corners with either the presence of multiple vertices and tiny facets, or the necessity to break the planarity constraint on roof sections and facade components. We propose a 2D planimetric arrangement-based framework to address this problem. We first regularize, not the 3D planes as commonly done in the literature, but a 2D polyhedral partition constructed from the planes. Second, we extrude this partition to 3D by an optimization process that guarantees the planarity of the roof sections as well as the preservation of the vertical discontinuities and horizontal rooftop edges. We show the benefits of our approach against existing methods by producing simpler 3D models while offering a similar fidelity and efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SimpliCity:用简单的正则化 3D 模型重建建筑物
从机载激光雷达点云重建建筑物的自动方法侧重于以快速和可扩展的方式生成精确的三维模型,但它们忽略了向用户提供简单和正则化模型的问题。因此,输出的网格往往在拐角处存在连接性近似问题,要么存在多个顶点和微小切面,要么必须打破屋顶截面和立面组件的平面性约束。我们提出了一个基于二维平面布置的框架来解决这个问题。我们首先规范化的不是文献中常见的三维平面,而是由平面构建的二维多面体分区。其次,我们通过一个优化过程将该分区挤出到三维空间,该过程保证了屋顶部分的平面性,并保留了垂直不连续性和水平屋顶边缘。我们展示了我们的方法与现有方法相比的优势,即可以生成更简单的三维模型,同时提供相似的保真度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum Plane Bichromatic Spanning Trees Evolving Distributions Under Local Motion New Lower Bound and Algorithms for Online Geometric Hitting Set Problem Computing shortest paths amid non-overlapping weighted disks Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1